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Abstract

This note serves as a gentle introduction to a modern research program in Quantum
Field Theory, from one particle physicist’s (biased) perspective. The goal is to explain some
of the big questions that motivate a deeper study of the nature of Quantum Field Theory,
and to provide context for a few of the tools that play a starring role in driving progress in
the field. The content grew from a series of colloquia that the author gave in the subject.
These notes are aimed at the level of an undergraduate physics major who has taken a first
course in Modern Physics, and so has been exposed to core concepts in quantum mechanics
and special relativity.
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1 The Big Picture

1.1 A matter of scale

The job of a theoretical physicist is to construct theories that accurately describe nature. Cru-
cially, any theory that one constructs will only be valid within a certain regime of validity. For
example, classical Newtonian mechanics well describes much of the macroscopic phenomena of
our everyday lives; given the positions and momenta of billiard balls or people or airplanes,
their future dynamics can be determined from Newton’s laws. However, Newton’s laws are only
an approximation of the more fundamental laws of quantum mechanics that apply to the micro-
scopic world of the elementary particles. At scales where quantum effects dominate (roughly,
when the de Broglie wavelength of the object is much smaller than the scale at which the
measurement is taking place), the laws of physics are inherently probabilistic, as opposed to de-
terministic. In quantum mechanics, particles are described by wavefunctions, whose amplitudes
give the probability of finding the particle in some particular state upon measurement.

Figure 1: The theory tree.

On the other hand, when a billiard ball or rocket ship moves very fast, at speeds close to the
speed of light c ≃ 3 × 108m/s, Einstein’s theory of special relativity is needed to describe its
dynamics. With special relativity we uncover fundamental new features that appear far from
classical—a highlight of which is the fact that mass and energy are two sides of the same coin,
able to be converted back and forth into each other with the famous E = mc2. It is only in the
limit that objects are moving at speeds much smaller than the speed of light that the laws of
special relativity reduce to the laws of classical mechanics.

The theory that marries special relativity and quantum mechanics is known as Quantum
Field Theory (QFT). Quantum Field Theory provides a unified framework for accurately de-
scribing both quantum and special relativistic effects—it encompasses these other theories,
reducing to them in the appropriate limits. Much as special relativity and quantum mechan-
ics exhibit new features relative to classical mechanics, QFT also exhibits fundamentally new
physics, some of which will be highlighted throughout this note.
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Figure 2: Some of the myriad of applications of QFT.

QFT is the natural language for describe a wide variety of systems in nature. It is essential
in particle physics, for example in formulating the Standard Model of particle physics which
describes the interactions of the elementary particles, and predicts to extremely high accuracy
the effects of particle collisions at particle colliders like the Large Hadron Collider. In cosmology
it is essential for describing the physics of the early universe and modeling inflation, with the aim
in part to explain the observed Cosmic Microwave Background. It is used widely in condensed
matter physics, to describe (for example) the fractional quantum hall effect, superconductivity,
and the study of critical phenomena and phase transitions, such as the critical point on the
phase diagram of water. Furthermore, it has many deep connections to mathematics, with
advancements in theoretical physics driving new insights into mathematics, and vice versa. As
QFT is at the heart of our best understanding of how nature works, a better understanding of
its structure and application is an essential endeavor of modern research in theoretical physics.

It is important to mention from the start that QFT is not the end of the story in physics.
The framework that consistently captures the physics of both QFT and Einstein’s theory of
general relativity, which describes how bodies move under the force of gravity, is string theory.
String theory describes quantum theories of gravity; it is naturally formulated in 10 spacetime
dimensions, and reproduces quantum field theories in the limit that gravitational effects decou-
ple, and the extra dimensions are taken to be very small. The fact that this interconnection
exists between string theory, theories of gravity, and QFT is extremely useful, and can be ap-
plied to very fruitful effect to glean insights into quantum systems. This idea of harnessing
interconnections (or, dualities) between very different-seeming theories to learn new insights
about the properties and dynamics of quantum fields is extremely powerful, and is a motif
which appears over and over again in modern high energy theory research.

1.2 What is QFT?

The essential concept of Quantum Field Theory is that all of the elementary particles and forces
in the universe are ripples of quantum fields that take values throughout all of space and time.
Particles like the electrons, quarks, and photons are excitations of these fundamental fields.

4



Figure 3: An electromagnetic wave.

Mathematically, a field is simply a quantity
that has a value at each point in space (x, y, z),
and time t. A familiar classical example of a field
is the electromagnetic field, which consists of or-
thogonal vector-valued electric and magnetic field
components, E⃗(x, y, z, t) and B⃗(x, y, z, t). Waves
of electromagnetic fields propagate at the speed of
light. Upon quantization, the excitations of the
electromagnetic field have particle-like properties
which we call photons. In Quantum Field Theory,
all particles are excitations of more fundamental quantum fields—electrons are arise from exci-
tations of electron fields valued at each point in space and time, and similarly for quarks, and
so on.

In the same way that wavefunctions encapsulate probabilities in quantum mechanics, in
field theory the field values tell you about the probability of the particle being found in a
particular state. For example, if an electron field is localized around a point in spacetime, then
the associated electron can be understood to be localized near that point. Fields can interact
with each other locally, so that (for example) the act of two particles colliding is modeled by
the interactions of their fields.

Figure 4: A schematic representation of two localized fields interacting.

The mattress model At the very heart of Quantum Field Theory is perhaps our favorite
toy system in physics: the simple harmonic oscillator. QFT treats every point in all of space
as a quantum harmonic oscillator, so that the field associated to a particle is composed of an
infinite number of oscillators. In this quantum theory of electromagnetism (known as quan-
tum electrodynamics, or QED)1, one treats the normal modes of the electromagnetic fields as
harmonic oscillators, which satisfy canonical quantization relations upon quantization.2

This fact that fields arise as collections of oscillators is behind much of the rich phenomena
that QFT describes. For example, recall that the quantum harmonic oscillator has a zero point
energy of E = 1

2ℏω; due to the uncertainty principle, the energy of a system described by a
harmonic oscillator cannot have zero energy. It follows that even in completely empty space—
the so-called vacuum—there is a nonzero energy density associated to this zero point energy.
Since energy and mass can be converted into each other (E = mc2!), this vacuum energy density
can be converted into massive particle excitations. There is always a probability that particles

1 The author apologizes in advance for the proliferation of acronyms. Theoretical physicists like acronyms.
2 By “the quantum theory of electromagnetism”, we mean that quantization methods can be used to turn the

classical theory of electromagnetism described by Maxwell’s equations into a quantum theory, which is required
for computations involving electromagnetic interactions for which quantum effects are important.
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can fluctuate in and out of existence at every point in space due to such quantum fluctuations.
This is an amazing conclusion which leads to actual, measurable effects.3

Figure 5: Coupled harmonic oscillators.

Nature is interacting In the same way that
the energy levels and wavefunctions of a particle
in a quantum harmonic oscillator potential can
be exactly solved in quantum mechanics, the free
field is an exactly solvable system in Quantum
Field Theory—the energy levels, analogues of the
wavefunctions, and expectation values of physical
observables can be exactly solved for analytically.
But of course, in general nature is interacting. In-
cluding field interactions in this picture is like cou-
pling the harmonic oscillators, so that the system
becomes anharmonic. The system of anharmonic
oscillators is no longer an exactly solvable system,
and we need to use approximations and other methods to determine the physics.4

Naturally, how strong or weak the interactions are will determine what sorts of methods
are best suited to describing their effects. The strength of field interactions are captured by
parameters known as couplings. For example, for a quantum anharmonic oscillator with a po-
tential of the form V (x) = 1

2kx
2 + gx4, the coefficient g to the quartic term is a coupling whose

magnitude determines whether the anharmonicity is very strong or weak. Another (probably
less intuitive) example of a coupling is the fundamental electric charge e in quantum electrody-
namics. The fact that the value of the electric charge in nature is measured to be very small,
e ≃ 1.6× 10−19C, is a reflection of the fact that electrons and photons interact with each other
relatively weakly. Life on Earth would be very different if e was a larger value!5

When interactions between the fields are very weak and the couplings are small, then physi-
cists have developed reliable tools for systematically capturing the effect of the interactions.
These tools all fall under the umbrella of perturbation theory. The idea is that in a theory
with a small parameter g, one can perform a Taylor series expansion in the small parameter,
and thereby order by order in the expansion compute quantities of interest including succes-
sively larger powers of g. Such perturbative methods have been wildly successful at accurately
predicting the physics of weakly-coupled QFTs such as quantum electrodynamics.6

For example, a quantity that one might wish to compute is the probability that two incom-
ing electrons will scatter off of each other. This scattering process is possible precisely because
photons and electrons interact with each other—photons are the particle-like excitations of elec-
tromagnetic fields, and act as the force-carriers of electromagnetic force, under which electrons
are charged. Any particle that can interact with photons experiences electromagnetic force.

3 The Casimir effect is the phenomenon that the energy of empty space produces a tiny force between two
uncharged conducting plates—check out this Physics Today article for further reading.

4 The fact that the free field is exactly solvable has a lot to do with the fact that the harmonic oscillator
potential is quadratic, so that the resulting equations of motion for the wavefunctions contain at most two powers
of x (in the quantum mechanics problem). Including higher order terms in the potential leads to a system which
no longer admits exact solutions.

5 Really, the dimensionless coupling which controls perturbation theory is α = e2

4πϵ0ℏc
≈ 1

137
. A famous quote

by Richard Feynman expounds the smallness of this number as one of the great “mysteries of physics”.
6 A brief aside on language. Quantum Field Theory refers to the framework as a whole of describing systems by

quantized fields. However, we also often refer to specific theories within this framework (with specific couplings,
types of fields, etc.) themselves as quantum field theories, or QFTs. It is interesting both to better understand
how to effectively use the framework as a whole, as well as how to apply it to learn about specific QFTs.
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Since the interaction between the electrons and photons are weak, however, this probability
can be accurately calculated in perturbation theory order by order in the coupling e. At lead-
ing order (assuming the fewest interactions between the incoming electrons and a photon), the
amplitude is proportional to e2, while at subleading order the amplitude is proportional to e4,
and so on. In physics, these scattering interaction probabilities are represented by Feynman
diagrams; you can think of each of the diagrams in Figure 6 as a rule set forth by QFT that
computes the probability of the interaction occuring. Since e2 ≪ 1, the second diagram con-
tributes much less than the first diagram to the probability, and it is a good approximation to
keep only the first terms in the expansion.

Figure 6: Electron scattering in perturbation theory.

However, these perturbative techniques fail for many interesting problems where couplings
are not small and the fields are strongly interacting. (Clearly, if e2 was order 1 then it does not
make sense to series expand in powers of e2.) In particle physics the quintessential example of
such a strong coupling problem is that of the strong nuclear force; this is the force that involves
the dynamics of quarks and gluons, explaining why the nucleus of the atom is bound together
from protons and neutrons, and why protons and neutrons themselves are bound together from
quarks and gluons. Formulating exactly how this happens is literally a million dollar question,
put forward at the turn of the century by The Clay Institute.7

Overcoming this strong coupling problem is the foremost challenge of 21st century research
in Quantum Field Theory. The big picture goal of the author’s research program is to develop
novel theoretical tools to solve for the dynamics of QFT at strong coupling; both for the purposes
of developing toolkits that can be used widely in a variety of contexts, as well as in applying
them to particular QFTs of interest in particle physics and string theory to learn about their
physical properties. The rest of this note will describe a few of the various tools in the modern
theoretical physicist’s toolkit that are critical in addressing this challenge.

7 This challenge can be more precisely formulated as proving the fact that the lowest energy state in a quantum
theory of gluons has mass, and so is also known as “the mass gap” problem.
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2 Getting Around the Strong Coupling Problem

2.1 Go with the (renormalization group) flow

It is an essential fact that physics depends on the scale at which you measure it. This was the
idea with which this note began, and it underlies the modern way that physicists think about
Quantum Field Theory. The mathematical framework behind this fact is captured by the
renormalization group (RG). The idea is that the couplings in a given QFT that parameterize
the strength of interactions between the constituent fields are actually not constant (and so,
commonly referring to them as coupling constants is a bit of a confusing misnomer!). The
couplings change, or “flow” as a function of the energy scale at which they are measured, and
the way in which they flow is baked into the formalism of the renormalization group.

To unpack this statement, the first concept to explain is that of an energy scale. If I wish
to measure the height of a tall building, I can use a meter stick in order to obtain the height
within an accuracy of ∼ ±1m. If I wish instead to measure the position of a particle like an
electron, clearly I need to resolve a much finer scale, and so I require a smaller fundamental
unit of measurement. In general, when one measures an object’s location by throwing light
(or some other particle) at it and seeing what comes back, the distance that can be resolved is
on the order of the wavelength of the light—the wavelength is like the meter stick, setting the
scale of resolution. In order to measure the height or location of the building within reasonable
resolution, we can do so with light of wavelength 1m, which translates to an energy E = 2πℏ/λ
of about 10−6 eV. On the other hand, an electron in a metal has a typical de Broglie wavelength
on the order of nanometers, so that the energy of the light needed to resolve the electron is
on the order of 103 eV. Therefore, measuring the location of the electron is a comparatively a
high energy, or small-wavelength experiment, while measuring the height of the building is a
low energy, or long-wavelength experiment.

Much like the relativistic world of the electron exhibits wildly different physics from the
classical macroscopic world of cities and buildings, physics looks very different if I probe a
system at high energies, which allows me to zoom in to very tiny distance scales, as opposed
to low energies, zooming out to large distances. In analogy with the electromagnetic spectrum,

Figure 7: A waterfall analogy for the renormal-
ization group flow of the couplings g in a QFT.

physicists often say that probing a system at
high energies corresponds to probing the ultra-
violet, or UV, limit of the theory, while probing
a system at low energies corresponds to the in-
frared, or IR, limit. We will use this language
throughout this note. (Of course, the notion of
high-energy versus low-energy is relative, and
in any system of interest there may be many
disparate energy scales which might be inter-
esting to examine!)8

A mathematical description of the renor-
malization group is outside of the scope of this
note, so we will instead use analogy to express
the main ideas. A nice metaphor of RG evolu-
tion is water falling down a waterfall from high
to low potential energy. The water might be

8 As an aside, because particle physics experiments typically occur at very high energies, the field of particle
physics is also known as high energy physics.
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moving very quickly at the top, and depending on its initial velocities and how it’s perturbed
by the rocks it will fall down to different pools at lower potential energies, and continue on
down the waterfall until it pools at the bottom in a lake (at lowest potential energy). Clearly,
the pooled water at the bottom behaves very differently from the fast moving water at the top.
Similarly, the value of the couplings in a QFT start from some initial value at high energies, but
by the time we arrive at low energies far down the flow they might take some totally different
value, so that the physics looks completely different.

In the example of quantum electrodynamics, we can think of the value of electric charge e
that is measured in a typical experiment to be the low-energy value. However, if we were to
probe the electron at much higher resolutions, or at very short distances, then the electron will
actually have a slightly different (larger) value of the electric charge.

Emergent phenomena Since physics depends on the scale, the important question that
needs to be addressed is, what is the most useful way to extract information about the effective
physics at a given scale that we care about? Renormalization group flow is a kind of zooming
out, and in this process there is a coarse graining of what the right effective particle content
and interactions are that capture the short versus long distance physics.

A useful analogy is that of a forest.9 If I probe the forest at short distance scales by walking
through the forest, I experience the leaves, the dirt, and the individual trees. However if I
zoom out and probe the forest from a large distance away, say by flying over the forest in an
airplane, I can appreciate the larger structures—the forest as a whole, the shape of the river,
the fact that it’s placed in a valley and surrounded by mountains. It is true that the forest is
still made up of many leaves on trees, but this description in terms of thousands of leaves is not
useful to describe the features observed from the plane—one instead needs to talk about whole
collections of trees. In the same way, collective, emergent behaviors can be totally different
from microscopic behaviors. The goal of the theoretical physicist is to develop frameworks that
allow us to extract the features of such emergent phenomena.

Figure 8: A schematic representation of the QCD phase diagram as a function of the coupling.

The strong nuclear force There are various options for how a QFT might behave under
the renormalization group. In the example of quantum electrodynamics, the coupling is weak
at low energies, but gets larger at high energies. The other quintessential example of a QFT
in particle physics is the theory of the strong nuclear force between quarks and gluons, known
as Quantum Chromodynamics (or for short, QCD). Figure 8 (schematically) depicts the QCD

9 The author recalls first hearing a similar forest analogy made in a colloquium by Dr. John McGreevy.
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coupling as a function of the energy scale at which the measurement is taking place, rotated
so that the vertical axis goes from high to low energies. At high energies the coupling is small
and the theory is weakly coupled. In this regime the quarks and gluons are weakly interacting,
free to move about individually as they like. The physics of these free quarks and gluons can
be probed at high energy particle colliders, and the results of experiments at these scales can
be well described by perturbation theory.

However, as we dial down to lower energies with the renormalization group, at a scale of order
∼ 200 MeV the coupling gets very large, and the theory becomes very strongly interacting. In
this phase the quarks and gluons are bound up tightly into protons and other types of composite
particles called hadrons, and the individual quarks cannot be separated out. This phenomenon
is known as confinement of the color charge, since gluons are the force-carriers of the strong
force (also known as the color force). Physicists have collected definitive experimental and
numerical evidence for low-energy confinement in QCD, however it is an outstanding challenge
as to whether we can gain a better analytic understanding of the emergence of these features,
since they are the result of very large interactions. This is one of the holy grail strong coupling
problems in particle physics.

Flow to a fixed point Another option for how a QFT can behave under renormalization
group flow is it can flow to a point where the couplings no longer change with scale. Once the
theory has arrived at such a “fixed point”, one can keep dialing the energy scale down further
and further and yet the value of the coupling will stay fixed, so that the physics of the theory
in this regime is scale invariant. The type of QFT that describes such a scale invariant fixed
point is called a conformal field theory.10

Figure 9: Flow to a conformal fixed point.

Figure 10: Like a CFT, a fractal exhibits scale invariance.

10 It turns out that when a field theory is scale invariant, it is also invariant under a larger set of transformations
known as conformal transformations, so that field theories with conformal invariance describe fixed points of the
renormalization group. As we will touch on in the next section, conformal invariance is an important kind of
symmetry that a field theory might have.
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This scale invariant behavior is well visualized by a fractal, which has this property that
as I continue to zoom in the fractal continues to look the same; in this way the behavior of a
conformal field theory continues to look the same even as I zoom to smaller and smaller energy
scales.

Conformal field theories (or CFTs) are extremely important throughout many subfields of
theoretical physics, principally because they capture the physics of critical phenomena: CFTs
model second order phase transitions. One example of such a transition is exhibited by the Ising
model of a lattice of spins. Consider a 2d spatial lattice, where at every point on the lattice
there is a variable that can take one of two values: up, drawn in blue in the figure, or down,
depicted by white in the figure. Each spin is allowed to interact with its nearest-neighbor spins,
in such a way that the energy of the system is lower when neighboring spins are aligned in the
same direction.

The behavior of this system depends on the temperature, and one can think of decreasing the
temperature from high to low values as a renormalization group flow from high to low energies.
At high temperatures, the lattice spins are randomly aligned up and down, and the system is
in the so-called disordered phase. At low temperatures, the spins all align in the same direction
(since this minimizes the ground state energy). The Ising model is then a statistical model
for ferromagnetic behavior, where the spin alignment represents the alignment of magnetic
moments in a ferromagnetic material. In between the high-temperature disordered phase and
low-temperature ferromagnetic phase, there is a critical temperature at which a phase transition
occurs. When the system is tuned to this critical temperature, it becomes scale invariant, and
the behavior of the system is described by a conformal field theory.

Figure 11: The Ising model on a 2d spatial lattice. Figure 12: Supercritical fluid.

Another example of a second order phase transition is the critical point in the water phase
diagram between water and steam, depicted in Figure 2. At high enough pressures, when water
is heated to a certain temperature it becomes a supercritical fluid, which is a state of matter
distinct from liquid or gas that exhibits scale invariant behavior. The physics of the supercritical
fluid as water goes through this phase transition is modeled by a conformal field theory.

2.2 Duality and the interconnected space of QFT

Amazingly, it turns out that both of the seemingly very different critical points we just discussed—
the supercritical fluid and the Ising model phase transition in two spatial dimensions—are de-
scribed by exactly the same conformal field theory. This is a surprising fact underpinned by a
deep phenomenon known as duality.

A duality is when two or more systems look extremely different at high energies—their
microscopic fields and interactions and behaviors are completely distinct—but at low energies
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they describe exactly the same universal features, and are then described by exactly the same
conformal fixed point.11 In the waterfall analogy of renormalization group flow, this is when
there are two or more QFTs at different starting points on the top of the waterfall, but which
all flow to the same pool at the bottom. Thus, another reason that conformal field theories
are very special amongst general QFTs is that they capture the universal behaviors of very
different microscopic physics. This is a phenomenon that is also known in the condensed matter
literature as universality.

Figure 13: Dual quantum field theories.

These sorts of interconnections amongst
quantum field theories are extremely powerful
for addressing the strong coupling problem, be-
cause often dualities relate a strongly-coupled
QFT with a weakly-coupled one. Suppose that
QFT1 in Figure 13 has (like QCD) very strong
interactions at low energies, so that we do not
have a good perturbative grasp on its prop-
erties, but QFT2 is weakly interacting at low
energies, à la quantum electrodynamics. Since
QFT1 and QFT2 are dual, and thus described
by exactly the same physics at low energies,
we can use our traditional perturbative tools
that are well-suited to the weakly-coupled dual
QFT in order to learn about the IR limit of the
strongly-coupled QFT1. In this way, duality
can provide a window into previously inaccessi-
ble strong coupling physics! One of the guiding
principles of research in theoretical high energy physics is to harness such deep interconnections
between QFTs—from renormalization group flows and dualities—in order to characterize the
strong coupling properties of field theories.

Exploratory QFT We just saw how dualities between different quantum field theories that
flow at low energies to the same conformal fixed point can be very powerful, since often it is
easier to compute physical observables in one dual description than the other. The same logic
applies to other kinds of dualities and interconnections. As we hinted at in the beginning of
this note, the connections between string theory, theories of gravity, and quantum field theories
also lead to interconnections that can be utilized to constrain the physics of strongly interacting
QFTs. In the waterfall analogy, you can think of string theory and theories of quantum gravity
as other points much higher up at the top of the waterfall, that can flow down and connect with
a field theory at low energies. One of the big lessons of the last couple of decades of research in
QFT and string theory is that these sorts of interconnections are completely ubiquitous.

It is useful to think about all the possible QFTs that have different field content, interactions,
and properties, coming from all sorts of different constructions, as belonging to an abstract
theory space of QFT. Different points in the blob of Figure 14 are each meant to represent
a different theory with seemingly different properties. The interesting statement is that this
theory space has deep, and often surprising interconnections. Dualities and renormalization
group flows connect QFTs that might look on the surface wildly different from each other, and
might individually be best suited for different types of toolkits, but nonetheless are secretly
related in surprising ways which can be exploited. By exploring one corner of this space, we

11 For the purposes of this note we will take this as the definition of duality, although other sorts of dualities
also exist and are interesting!
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Figure 14: An abstract rendition of the interconnected space of QFT.

often actually learn important lessons about another corner. Experience has shown us that this
sort of exploratory view of QFT is often extremely fruitful.12

12 The author attributes the phrase exploratory QFT to their advisor Dr. Ken Intriligator, who has clearly
influenced much of their point of view on physics.
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3 The Power of Symmetry

As we will now review, symmetry has deep implications for the study of QFT.

3.1 What is symmetry?

Symmetries are everywhere in nature, from the reflection symmetry in a face, to the rotational
symmetry of a snowflake. Symmetries can be either discrete, or continuous. For example, the
pattern in Figure 15 has several discrete symmetries: it is symmetric under translation by 1
unit in the horizonal direction, as well as under translation by about 1.4 units in the vertical
direction; furthermore it is symmetric under reflecting the image about its center axis. An
example of a continuous symmetry is the rotational symmetry of a circle; the circle is invariant
under rotations by not only discrete angles, but also infinitesimal angles.

Figure 15: Examples of symmetries.

As humans we often use symmetry for its aesthetic appeal (see: Wes Anderson). On the
other hand, symmetry in physics plays a fundamental role in formulating the physical laws of a
system. In physics, by symmetry we mean a transformation that does not change the results of
any possible experiment, leaving the underlying physical laws invariant. For example, Einstein’s
principle of relativity tells us that the laws of physics must take the same form regardless of
where one is in spacetime, which translates into the statement that the laws of physics for a
relativistic system are invariant under a set of spacetime symmetries (known as the Poincaré
group). These include infinitesimal translations and rotations in space; whether a scientist
performs an experiment standing in Poughkeepsie or in Tokyo, they must be able to use the
same physical laws to predict the results of the experiment. A relativistic QFT is necessarily
invariant under this set of spacetime symmetries.13

Another example of a symmetry that we have already mentioned is conformal symmetry.
Conformal symmetry is a type of spacetime symmetry that includes scale invariance. As we
stated earlier, quantum field theories that are invariant under conformal symmetry (i.e. con-
formal field theories) play a privileged role in theoretical physics.

13 In this note we have motivated Quantum Field Theory as necessary to consistently describe the combination
of quantum mechanics and special relativity, and so of course by this definition a QFT must obey the laws of
relativity. However, the framework of QFT is actually still very useful in the limit where one or the other of these
assumptions is relaxed; classical field theories that have not been quantized are extremely useful in many contexts,
as are non-relativistic quantum field theories that relax the assumption that they describe relativistic physics.
For instance, field theories can be applied to describe systems on a discrete spatial lattice, which preserves only
discrete (rather than continuous) translations and rotations.
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One more example of a spacetime symmetry that a theory might possess is supersymmetry.
Supersymmetry acts on bosons to turn them into fermions, and vice versa. Then, a supersym-
metric field theory has matter content that necessarily comes with equal numbers of fermions
and bosons in equal mass pairs, so that a supersymmetry transformation leaves the theory in-
variant. The world as we have observed it is not supersymmetric (notably, the Standard Model
does not have equal numbers of bosons and fermions), however it is possible that this is an effect
of our “low scale” physics, and that the underlying laws of nature are in fact supersymmetric.
Scientists are testing this hypothesis for signatures of supersymmetry at particle colliders like
the Large Hadron Collider. Regardless of whether or not supersymmetry is actually realized in
nature, however, there are good reasons as a theoretical physicist to study supersymmetric toy
models of particle physics, some reasons of which we will touch on below.14

(As a conceptual aside: this discussion is likely a somewhat more abstract application of
symmetry than you might be used to. In the example of relativistic Poincaré invariance, it is not
that the physical world itself is invariant under translations or rotations—clearly Poughkeepsie
and Tokyo are very different places—but rather, it is the equations of nature that are invariant
under the symmetry. Of course, there are also situations where the physical state of the world
described by a QFT is invariant under some symmetry even if the underlying equations are not
(so that the symmetry is emergent from a system that did not originally possess the symmetry);
or vice versa, where the underlying equations respect some symmetry but the physical state
does not realize this symmetry (so that the symmetry is broken). We will soon see an example
of this latter scenario, where the underlying laws of a system respect a symmetry, but a physical
state of the system breaks it.15 These possibilities are part of what make tracking symmetries
a subtle task—in general one must determine (1) what are the underlying symmetries of the
physical system of interest? and (2) how are these symmetries realized in the physical states
of the system at different energy scales? Answering this second point especially can be quite
intricate, but also reveal a lot of interesting physics!)

3.2 Lessons in utilizing symmetry

Let us return to the question of why symmetry is so powerful in theoretical physics for computing
and constraining the properties of physical systems. Some reasons are as follows.

(1) First of all, symmetries imply conserved quantities, as formalized in Emmy Noether’s
theorem. For example, the invariance of a theory under spatial translations leads to the state-
ment that momentum is a conserved quantity in this theory. Momentum conservation, energy
conservation, angular momentum conservation, and any other conservation law that you en-
counter in your physics classes are each the result of an underlying symmetry (invariance under
spatial translations, time translations, and rotations, for the aforementioned quantities). This
is useful because conserved quantities are conserved whether or not the interactions are weak
or strong, so can be used to constrain the strong coupling dynamics of a system.

14 There are several reasons that supersymmetry in nature is an attractive possibility theoretically: for one,
supersymmetry would unify all matter and forces, since it would relate the force-carrying bosons and fermionic
matter particles by a symmetry; for another, most string theories are supersymmetric, and string theory is our
current best candidate for a unified theory of physics at the highest energy scales. For the purposes of this
note, however, supersymmetry is most valuable for another reason: for providing tractable toy models of parti-
cle/mathematical physics, where exact results can be obtained and new computational frameworks developed.

15 For those that have taken a course in advanced classical mechanics, this is the difference between the action
being invariant under a symmetry (thereby implying that the equations of motion are invariant), versus the
expectation value of an operator in a particular state being invariant under the symmetry.
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(2) Furthermore, symmetry is an indispensable principle for distinguishing / character-
izing phases of physical systems.16 For instance, in the earlier example of Ising spins on
a lattice, the underlying physics is invariant under flipping all of the spins at once from up to
down, which is kind of reflection symmetry. Doing this global reflection does not change any of
the energies of states, equations of motion, or any other underlying conclusion about the system.

Figure 16: Symmetry breaking.

However, at low temperatures the system chooses a low-
est energy state where either all the spins are pointed
up, or all the spins are pointed down, so that this choice
breaks the underlying reflection symmetry. (In other
words, in this phase the magnetization of the system can
be pointed in the up direction or the down direction, but
in either case the physics is ferromagnetic.) This is an
example of symmetry breaking. This reflection symme-
try breaking pattern is in fact the distinguishing feature
of the low temperature ferromagnetic phase.

(3) Symmetries constrain renormalization
group flows. This is because some symmetry data as-
sociated to a QFT is actually independent of the energy scale, and so is completely invariant
under renormalization group flows. Basically, associated to a given QFT with some set of sym-
metries is a collection of numbers, which for concreteness we can refer to as A.17 Suppose that
the QFT is weakly coupled at high energies, or in some particular duality frame. Then, it is
straightforward to compute these numbers A at that scale or in that frame, using standard
perturbative techniques. But then comes the power of this method: since these numbers do
not change under renormalization group flow, even if the QFT is very strongly coupled at low
energies or in a dual description, its symmetry data A has already been determined and applies
to all such limits. Very few quantities in physics are completely scale independent, and so this
data gives a rare glimpse into the properties of the strongly coupled phase of the theory.

Figure 17: Using symmetry data to constrain RG flows.

(4) Enough symmetry can allow for exact solutions. There is a precise sense in
which the more symmetry a system has, the easier it is to exactly solve for its properties
without needing to resort to approximate methods. A good metaphor for the utility of simplified
models for complex phenomena is the spherical cow. Cows are complicated shapes; they have
four legs, two ears, small hairs all over, etc. In order to accurately describe the motion of a
cow, all of these features should be taken into account—how they affect the wind resistance
against the cow, its rhythm of motion, and so on. It would be difficult to make any sort of
useful prediction taking into account all of these complex features. So instead, one might first
make a simplifying approximation and consider the cow to have spherical symmetry. We can

16 This is known as the Landau paradigm of the classification of phases of matter.
17 These numbers are called ’t Hooft anomalies, and their computation and characterization play a starring

role in modern high energy theory research. For reference, as of writing, 13 of the author’s 16 published articles
concern in large part ’t Hooft anomalies.
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easily exactly calculate the motion of a sphere on flat ground when subjected to various forces.

Figure 18: Spherical cows.

Then, once we’ve understood the motion of the
spherical cow, we can start breaking the spherical
symmetry—first in small ways, and then in large
ways—to understand how to best adapt the compu-
tations.

An example of using additional symmetry to con-
cretely compute a strong coupling quantity is as fol-
lows. Conformal field theories have associated to
them numbers known as central charges, which pro-
vide a count on how many bits of information are
needed to effectively characterize the system at a given energy scale. (Physicists call this infor-
mation needed to specify a system degrees of freedom.) Recall from our earlier discussion that
renormalization group flow can be viewed as a kind of coarse graining. In this coarse graining
from high to low energies we generally need less information to specify the system; when walking
through the forest one needs to describe the positions of thousands of leaves and hundreds of
trees, while from far distances away we might only need to specify that there is 1 forest, with
2 mountains and 1 stream. By analogy, if a CFT at high energies and a CFT at low energies
are connected by a renormalization group flow, then I would expect the CFT at low energies to
have a relatively smaller central charge, since it should have less effective variables to describe.
This expectation is in fact born out; there are theorems that the central charges of conformal
field theories must decrease under renormalization group flows. The central charges is then an
extremely important window into the properties of a strongly-coupled CFT, since we might not
have any other means to get an idea of how many degrees of freedom it describes.

Unfortunately, it is not known in general how to compute the central charge of a generic
strongly interacting conformal field theory. However! If the CFT has the larger symmetry of
supersymmetry, then supersymmetry provides enough constraints that the central charge can
often be computed exactly—there is a straightforward calculus-based extremization algorithm
for doing so. Applying this algorithm and computing the central charge of a strongly interacting
CFT is a useful tool for gaining a window into its physics.

Supersymmetry often allows for exact, analytic solutions of the properties of quantum field
theories, another important example of which is as follows. In a supersymmetric version of
a theory that describes the dynamics of gluons, it is possible to derive that the theory con-
fines at low energies, and follows a particular symmetry breaking pattern that is reminiscent
of what happens with the real world strong nuclear force. Thus, the dream of analytically
deriving confinement and other strong coupling properties of a QCD-like theory is realized in
a supersymmetric version of the theory! Examining whether or not the lessons learned using
supersymmetric QFT can be extended to glean new insights into non-supersymmetric theories
like quantum chromodynamics is an interesting question under active research.

Shining a light on the space of QFT We have emphasized throughout this section that the
more symmetry a field theory possesses, the more handles exist for computing its distinguishing
observables. QFTs with large symmetries can be very constrained, and some of their features can
be determined exactly even in very strongly interacting regimes by using the interconnections
between QFTs and symmetry-based methods.

Extrapolating from these observations, a very useful perspective is to view these more
tractable QFTs with large symmetries—such at conformal field theories and supersymmet-
ric field theories—as privileged lampposts amongst general QFTs, which we can employ as a
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testing ground for probing physics at strong coupling, thereby shining a light on some corners of
the space of more general QFT. The idea is that we first develop new computational frameworks
in these highly-symmetric corners where there are more tools at our disposal. Then, we slightly
break symmetries, perturbing away in a controlled fashion from these special points in order to
learn how to adapt our toolkits to the study of more realistic QFTs, eventually carving out our
understanding of more and more of this space. This perspective underlies much of the research
in modern particle theory and mathematical physics.

Figure 19: Theories with large symmetries are useful lampposts in the space of QFT.
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4 What String Theory Can Do For You

This note began with the statement that QFT is the fundamental framework that unifies quan-
tum mechanics and special relativity. String theory is thought to be the more fundamental
theory that unifies QFT and general relativity, so that it is the consistent framework for de-
scribing quantized theories of gravity. Before concluding, we will briefly comment on how string
theory can be employed to teach us general lessons about quantum field theories.

From particles to fields to strings String theory describes all the particles and forces in
the universe in terms of modes of tiny vibrating strings, so that each particle is identified as
a vibrational mode of an elementary string. This string-like nature of particles would only be
evident at very large energy scales / tiny distances, on order of the Planck scale ∼ 10−35m.

Figure 20: Compactifying a dimension.

String theories require extra spacetime dimen-
sions. Our macroscopic world consists of three spa-
tial dimensions, so that we live in four-dimensional
spacetime. String theory is defined in 10 spacetime
dimensions (9 space and 1 time), so that if string
theory is actually realized in nature, six extra di-
mensions must be curled up very small so that we
do not notice them. A good way to conceptualize the
idea of extra dimensions is to think about a piece of
paper. The paper has 2-spatial dimensions, but if I roll it up into a cylinder with a very small
radius, it will look effectively like a 1-dimensional line. If the paper is rolled up tightly enough,
an ant constrained to live on the line might never guess that there is a curled up extra dimension
beneath its feet!

Quantum field theories arise from limits of string theory in which the gravitational degrees
of freedom are decoupled. The QFTs of most interest to our real world—like quantum chro-
modynamics, quantum electrodynamics, or condensed matter systems like the Ising model—are
(of course) defined in 4 or lower spacetime dimensions, and so arise from limits of string theory
that involve compactification (rolling up the paper). These limits describe a sort of cross-
dimensional renormalization group flow, where at high energies the system is described by a
string theory (something way up high on the waterfall), and at low energies after taking the
compactification/decoupling limit the system is described by a quantum field theory.

Turning the crank Like the other interconnections we have discussed in this note, this in-
terconnection between string theory and field theory has proven very useful for learning about
general properties of QFTs. One highly utilized point of view is to use string theory as a tool for
generating different interesting QFTs, by taking these different limits. From this perspective,
string theory can be viewed as a sort of black box. The input to the black box is a particular
string theory with some configuration of dynamical objects (called branes), and a space to com-
pactify on. Turn the crank, and as output the black box generates a (generally supersymmetric)
quantum field theory, furnishing another point in the ever-expanding theory space of Figure 14.

One reason this perspective is interesting to pursue is that a generic QFT output by this
procedure is very strongly interacting, and so furnishes a potential testing ground for developing
techniques suited for strongly coupled physics. In fact, this procedure typically outputs QFTs
that have no tunable coupling whatsoever, so that there is no traditional sense in which there
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Figure 21: Generating QFTs from string theory.

exists a free field limit in any region of their parameter space. The fact that such fantastical
QFTs exist is an amazing and surprising conclusion of the last 30 years of research in string
theory—clearly, the space of QFT is much wilder than we might have thought!

Another reason this perspective is so powerful is that it allows a geometrization of QFT
data, since the effective degrees of freedom and symmetries of the field theory are organized
geometrically in the higher-dimensional string theory. This allows for the opportunity to develop
geometric and topological tools to understand and compute field theory observables. One of
the goals in this field is to understand precisely how the geometry encodes the symmetries and
related symmetry data of the QFT, and how to systematically extract this data using techniques
applicable even at strong coupling. Theoretical physicists have made a lot of progress in this
direction, but there is still much to understand.
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5 Outlook

Let us summarize. In this note we have reviewed why Quantum Field Theory is an essential
framework in modern physics, and that it is necessary to develop novel, creative tools to solve
for the dynamics of QFTs in strongly interacting regimes. The modern perspective of QFT is
based on the fact that the useful effective description of the physics changes with scale (along
renormalization group flows), so that collective phenomena are emergent at low energies. Renor-
malization group flows lead to deep and surprising interconnections (like dualities!) between
QFTs, which theoretical physicists harness to characterize their strong coupling properties.

Furthermore, symmetry is an indispensable tool for both organizing the space of possible
QFTs, as well as computing and constraining their distinguishing observables. We have seen
that it is often fruitful to first analyze systems with large symmetries (especially supersymmetry,
or conformal symmetry), where we have more tools at our disposal, and then to study how to
extend our toolkits to theories with less symmetries. Understanding how to fully characterize
the symmetry structure of a quantum field theory is thus one of the most interesting ques-
tions driving research in the field. There are many exciting related questions that theoretical
physicists hope to answer, a few of which are as follows.

• What is the most general classification of phases of quantum systems? (Or in other words,
how do we utilize symmetry in the most general possible way to expand the Landau
paradigm?)

• What are the most restrictive constraints symmetries place on the strong coupling dy-
namics of QFTs?

• Can we gain a deeper analytic understanding of confinement in quantum chromodynamics?

• Can we systematically classify the appearance of emergent symmetries in renormalization
group flows?

• What is the space of all possible conformal field theories—how do we characterize it and
differentiate between different universality classes, and what is the most useful grading on
this space? (This question is more tractable with supersymmetry, so a refined version is:
can we construct all the possible consistent superconformal field theories?)

• Can every QFT be obtained from some limit of string theory?

• Is there a systematic way to generate all possible dualities between QFTs (perhaps within
the context of string theory?)

• How is the full symmetry structure of a QFT that is obtained from string theory encoded
in the geometry?

If the history of particle theory research has taught us anything, it is that in answering these
questions we are certain to learn more fundamental truths about the nature of the world around
us.
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