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1 States, Ensembles and the Basic Tools of Thermodynamics

Textbook readings: (a first reading is due before Lecture 2; most pertinent to Lectures 1-3)
e Ch. 1, all (this should mostly be review / introductory material)
e Ch. 2, all

e Ch. 3 sections 3.1-3.4

e Ch. 4 sections 4.1-4.5

Learning Objectives:

Combinatorial Problems: 2-state systems, collections of harmonic oscillators

Probability Basics: mean, probability

Statistical definitions of temperature and entropy: S = kIn{2, 2 oscillator solids sharing
energy

Heat Capacity

Ideal Gas Law: know how to use the formulas pV = NkT, U = (3/2)NkT

1.1 Preliminaries of Thermodynamics and Probability

This course is concerned with thermodynamics. We will study the fundamentals of classical
thermodynamics (concerned with the conversion of heat into work), and statistical mechanics
(concerned with the statistical behavior of the underlying microstates of the system). We'll
begin with some introductory remarks on the basic concepts of thermodynamics and statistical
mechanics.

To introduce some of the main concepts of thermodynamics, we can have in mind the vague
example of two systems: these could be gas, liquid, or solid.

e Intuitively we all have a notion of what heat is: we can feel it when heat warms us up, or
when heat leaves us making us feel cold. More precisely, when two systems are in thermal
contact (able to exchange energy), there can be a transfer of heat from one to the other.
Heat is a form of energy, but we only use this term when talking about transfer.

As a form of energy, heat is measured in Joules (J); while the rate of heating has units of
watts 1W = 1.J - s~1. If a 60W lightbulb is switched on for 10 minutes, then it produces
Q = 60W - 600 s = 36kJ of heat.

e The first law of thermodynamics essentially states that energy is conserved in any
process. The heat lost by the hot system is equal to the heat gained by the cold system.

e Temperature is the measurable characteristic of a system that tells us how likely it is
to give off some heat. Heat will always flow from an object with a larger temperature to
one with a smaller temperature.



e After some amount of time, known as a relazation time or thermalization time, both
systems in contact will have the same temperature. We say that the two systems are in
thermal equilibrium, with their energy content and temperatures no longer changing
with time.

If various bodies (more than two) are all in thermal equilibrium with one another, then
their temperatures are all the same. (This is also known as the zeroth law of thermodynamics—
essentially it says that thermal equilibrium is transitive.)

But what MOTIVATES this transfer of energy? What makes that process a one-way, or
irreversible, one? The first law tells us nothing about that. For that we need the idea of
entropy, the 2nd Law, and statistical mechanics.

In thermodynamics, we accept as a fact of life that heat transfer is due to thermal contact
between two systems of different temperatures. In statistical mechanics, however, we look inside
the box: all possible states of the system (with an absurd number of velocities, positions, etc)
must be considered...even the ones where the hot side gets hotter and the cold side gets colder.
But, of all things, it turns out we get saved by probability! It is not technically impossible for
such weird states to occur, just absurdly improbable.

The subject of thermal physics naturally involves studying very large numbers of atoms, and
all of these different possibilities for their possible states. This is the problem of counting: the
universe contains many many things! A small cup of water contains about 3 x 10?4 molecules
of water. This lecture room contains on the order of 102" molecules of air. A magnet on your
refrigerator contains 10'® little magnetic dipoles that arrange themselves to yield the collective
magnetic property. Each of these individual things obey some equation of motion... and perhaps
we can solve the system when there are 2 or 3 things. But how are we supposed to solve a
system of 10%* things?

Despite this complexity, we mostly understand how the macroscopic world around us
works. We don’t care about how each molecule in the cup of water behaves, all we need is its
temperature. The laws of thermodynamics are examples of such macroscopic laws. Nonethe-
less...sometimes the microphysics actually matters. Why and How does water boil? This is
where statistical mechanics comes in: where we try to explain the macrophysics of a system
from its fundamental microphysics, without actually trying to solve the entire system of equa-
tions describing all the particles. In statistical mechanics, we some of the most important
buzzwords are:

Ensemble: a collection of a very large number of similar systems.

Microstate: a specific arrangement of a system (one member of an ensemble).

e Macrostate: An experimentally observable state of a system.

Multiplicity: The number of microstates in a particular macrostate

Probability: The likelihood of a particular macrostate being realized (ranges from 0 (0%
chance of being realized) to 1 (100% chance of being realized)

Probability basics and combinatorial problems

For example, suppose you set a penny, a nickel, and a dime on the table. Each coin can be
either heads or tails. This ensemble has 8 possible microstates:
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There are 4 possible macrostates: 1 microstate yields all three heads; 3 microstates yield 2 heads,
1 tails; 3 microstates yield 1 head, 2 tails; 1 microstate yields all three tails. The macrostates
have a multiplicity 2 of either 1 or 3. Then, the probabilities of these macrostates being realized
are given in general by:

Q(n Heads)
P(nH =—~*
(n Heads) Q(total)
Specifically, these probabilities for the 4 possible macrostates of n = 0,1,2, or 3 Heads are:
1 3 1
PO)==-, P(1)=P2)=- 3)=-
=5, PO=P@)=%, PB)=q

Of course, the probability of some configuration being realized, which is the sum of these
individual probabilities, is equal to 1 (or, 100%):

ZPizl.
7

Given a distribution of possible microstates that yield a set of macrostates, we can compute
statistical information about this ensemble. For example, the mean, or average, of outputting
a value x of a distribution is defined,

mean = () = = ZxZPZ
i

In this example, the average number of heads is given by
(n>:O-P(O)—|—1-P(1)+2-P(2)—|—3-P(3):O—i-%—i-g—i—g:1.5

This makes sense; there can be between 0 and 3 heads, and the possible macrostates (0,1,2,3)
are evenly distributed, so the average is the middle of these numbers, which equals to 1.5.

More generally, if we wish to calculate the average of a function of x, then we compute the
weighted sum,

B > f(zi) P discrete
= { [ f(z)P(x)dx continuous

where whether we are doing a discrete sum or an integral depends on whether the probability
distribution is discrete (as in the case of the coins) or continuous.

Furthermore, we can quantify how spread out the values are. The deviation from the mean
for a particular value of x is defined by

deviation from z = x — (z)



P(n)
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The standard deviation o, of the distribution is the square root of the variance,

standard deviation o, = \/((z — (2))2 = \/(22) — (z)2

For instance, the standard deviation in our coin example is computed using (n)? = 1.5% = 2.25,
and

(n?) = 0°P(0) + 12P(1) + 2°P(2) + 3*P(3) = 3
= 0, =13—225=0.866

This sort of statistical information will be very useful throughout this course!

Example Problem: The Random Drunken Walk

An example application is the theory of random walks. Imagine a drunken person
staggering attempting to walk home along a narrow street, so that their motion is confined
along one dimension. Let’s pretend that with each step, the drunken person is equally likely
to travel one step forwards or one step backwards, where subsequent steps are completely
uncorrelated with any previous one.

1. Suppose that the person starts at position 0. On average, where will they end up
after N steps?

2. What is the probability that he will be 2 steps closer to his destination after having
taken 4 steps?

Solution: At each step i, there are two possibilities, the drunk taking a step forward
or backward, each with equal probability 1/2 of being realized. So after N steps, there
are 2V possible microstates, each being realized with equal probability. However, some of
these microstates lead to the same macrostate, with ni total steps forward being taken.
The actual probability of a macrostate will be equal to the multiplicity of that macrostate
divided by the total number of possible microstates at that step,

Q(ntot)
2N

P(ntot) =

Because there is always equal probability of moving forward and backward, on average we
expect that the drunk will end up back at 0 after N steps.

Let’s do the counting up to 4 steps. We can label each possible microstate by whether
n4 at that step equals +1 (so the drunk steps forward) or -1 (so the drunk steps backwards).



So, at the N’th step, there will be N labels, each of which is +1 or —1. Then, the total
number of steps forward (labeling the macrostate) after N steps is equal to

N
Ntot = Z n (i)
i=1
For example: after 1 step, the possible states are

{+} > ot =1
{—} — Ntot — —1

At this step, the probability of achieving these different macrostates is P(1) = % and

P(-1) = %, so the person is equally likely to be found at either of these positions. The

average macrostate is

After two steps, there are four possible microstates, but only three possible macrostates:

{+a +} — Niot, = 2
{+,—}or {—,+} = not =0
{—= =} = ngot = -2

At this step, P(2) = 1, P(0) = 2 = 1, and P(—2) = 1, so they are most likely to be found

back where they started. The average macrostate is

1 1
N =2: <7’Lt0t>:21+0—21:0

After three steps, there are eight possible microstates, which result in only four possible
macrostates:

{+,+,4} = ntot =3
{+,+,—}or {+,—, +}or {— +,+} = net =1
{+,—,—}or {—+,—}or {—, — +} = not = —1

{—,—,—} = ntt = -3

so that P(3) =
again,

, P(1) = %, P(-1) = %, and P(—3) = The average macrostate is

1
3

1 3 3 1
N=3: D =3-+12-12_32 =0,
(neor) =35 + 15— 13 =33

Finally, after four steps, there are 16 possible microstates,
{+, +,+, +} — Ntot = 4

{+7+a+7 *} or {+a+7*a+} or {+a 77+7+} or {7’+a+7+} — Ntot = 2
{+7+)_7 _} or {+a _7+7_} or {_)+7+7 _}

or {+7 _)_7+} or {_7+7 _7+} or {_7_7+7+} — Ntot = 0
{_7 ) _7+} or {_7 _7+7 _} or {_7+7 _7_} or {+7_7 ) _} — Ntot = _2
{_7 Ty T _} — Ntot = _4



so that P(4) = 1%, P(2) = 1t = 1, P(0) =

=3, P(-2) =t =1, and P(—4) = . So,
the answer to the original question is P(2) = =

0.25. Again, the average is zero:

1 .1 3 1 1
N=d: (o) =43 +27+00 =2, — 4. =0.

Do you see the pattern? At the N’th step, the possible macrostate values niot that can be
achieved are labeled by partitions of N into two parts. Let n; represent the number of times
+1 appears in the partition of IV, and ns represent the number of times that —1 appears in the
partition of N:

N =n1+n2, Niot = (+1)n1 + (—1)ng = ny — ny

Since nq runs from 0 to N, —N < nyo; < N, in increments of 2, so that if N is even then ngot
is always even, and if NV is odd then nyt is always odd.

The multiplicity Q(ntot) of each partition is equal to the number of ways that n; (+1)’s and
ny (—1)’s can be arranged in the partition. The number of ways to arrange these two choices
is given by the binomial coefficient. The binomial coefficient is defined as follows: whenever
each element corresponds to making a binary choice (in this case, £1 at each step), and you
have N elements (total steps), then the number of ways to arrange those choices is

N N! N!
= “N ch = = 1.1
< ni ) CHoose T nllng! nl‘(N — nl)‘ ( )

This is the number of ways to choose nq elements from the N-element set of N = nq + ng, said
“N choose n1”. In our case, then, the multiplicity of a macrostate niot is computed as

Q(ntot) = < i\i )

Of course, if we wish we can write this expression in terms of the macrostate variable nio by
substituting

1
ntot:nl—ngznl—(N—nl) = nlzg(ntot—i-N)
Fixing the total number of steps N, the partition is equally well labeled by ny running from
0,1,..., N, or ng running from 0,1,..., N, or Ny running from —N,—-N +2,...,N —2 N.

Then, for a given number of steps N we can compute the probability of the macrostate being
realized:
Q(ntot) N'
P(’]’L t) = =
to 2N [%(N + ntot)] ‘ [%(N — ntot)] ' 2N

You can verify that this formula gives the expected results, for example, for N = 4 and nt =
—2:
4! 1

N=4: P(_Q):[%(4_2)}![%(“2)}!24:Z ‘

Another check on this formula is that it is invariant under niyoz — —nyot, as it should be!

P(ntot) = P(—ntot)



This symmetry immediately implies that the average is always zero: the average is taken by
summing all the possible values of ni. weighted by their probabilities, where recall ny runs
from —N to N in increments of 2:

N
<ntot> = Z ntotp(ntot)

Ntot=—N
0 N
= g Mot P (Mot ) + g Mot P (Ntot)
Ngot=—N Ntot =0
N N

= Z(_nt0t>P(_ntot) + Zntotp(ntot) =0 v
0

0

This binomial formula (1.1) is quite useful in counting microstates of 2-state systems. For
example, consider a 2-state paramagnet in a magnetic field. This is a system of N particles of
intrinsic spin 1/2, which can be thought of as N magnetic dipoles of moment u. (We assume
the dipoles do not interact with each other.) Quantum mechanics dictates that all the spins
must be either “up” (+1/2) or “down” (—1/2), so that the energy of each dipole is either uB
or —uB, respectively. What are the total number of microstates possible for this system? In
other words, what is the multiplicity of a given total energy state?

This is another example where the number of microstates is labeled by a partition of N
into two: this time into /Ny up-spins and N| down-spins, so that the total number of spins is
N = N; + N;. A total energy state with Ny up-spins will have multiplicity

N!

multiplicity for a partition of N = Ny + N : Q(Ny) = W

In-Class Exercise: Rolling the die
You have a regular 6-sided die. You roll the die until you get a 6, and then stop.

(a) What is the probability of not having rolled a 6 after N rolls?

Solution: Each roll is independent of the previous roll. After 1 roll, there is 1/6
chance of rolling a 6 (success) and 5/6 chance of not rolling a 6 (failure). If I didn’t
roll the 6 then I roll again: at this roll there is 1/6 chance of rolling a 6, and 5/6
chance of not rolling a 6.

Let p denote the probability of success on each trial, p = %, and ¢ denote the

probability of failure on each trial, g=1—p = %. After N rolls, I still haven’t rolled

a 6 with probability
N
& =|(2
6

(b) What is the probability of rolling a 6 on the N’th roll?

Solution: We have determined that after N — 1 rolls, there is a probability of (%)N_l

of still having not rolled a 6. On the N’th roll, there is a probability of 1/6 that I

10



roll the 6. So, the probability of “success on the N’th try” P(N) is

_ 5\V 1
P(N):CJN 1P: <6> 6

This is called a geometric distribution, and it’s plotted in the figure.

P(N)

0.15}

L]

010 . (N

0.05'

,: : ...’Oc
###W 10 15 20 25 30NumberofroIIsN

Note that there is 100% probability that I have success after some number of tries;
that is to say, that if I add up P(N) for N = 1,...,00, I should get 1. We can show
that this is the case using the infinite sum (1.2):

o0 o0 o0 o0
S PN =3 " =p> " =p |+ Z]
N=1 N=1 N=1 N=2

Evaluating ¢° = 1, and changing variables to k = N — 1, which runs in the leftover
sum from (N =2 <« k= 1) up to k = 0o, allows us to simplify this expression as

[e.e]
o R
k=1 q

> P(N)=p

N=1

In the first line we used the equation (1.2) to evaluate the infinite sum, and then in
the second line we simplified using p + ¢ = 1.

Intuitively, what is the mean number of times you would roll the die, each time you
played this (admittedly rather dull) game? Now try to derive the answer using the
definition of a mean value.

The following two infinite sums valid for ¢ < 1 are useful:

o q
k

> k= 1.2
=1y (1.2)

k=1

Dok = (13)

Solution: Intuitively, since on each turn there’s 1/6 chance of success, you expect to
need to play approximately 6 times in order to roll a 6.

11



We can derive this result as follows. The probability of success on the N’th roll is
P(N) given above. In general, N can run from 1 (if you are lucky) to infinity (if you
are very very unlucky). The average value of N is then computed by the weighted
sum,

(N)=> NP(N)=> N¢"'p
N=1 N=1

We can evaluate the sum as follows:

(Ny=p) N¢"'=p [(1)q0+ > Nqu]
N=1

N=2

Evaluating ¢° = 1, and changing variables to k = N — 1 <+ N = k + 1 so that the
remaining sum runs from k = 1 to oo, we can rewrite the expression in terms of the
given sums (1.2) and (1.3):

(N)=p

=p

1+ 3 (k +1)¢* 1+ ket + 3¢ :p[1+ 1_+ 1
k=1 k=1 =1 (1-9)?* (1-9q)

[0 —gP+q+q—q] 1
_p[ (1—¢q)? ]_p_G

In the second line we simplified using 1 — ¢ = p, and p = 1/6.

1.2 Statistical Definitions of Temperature and Entropy

Example: Interacting Einstein solids with oscillators A useful step in understanding
the specific heats of solids and statistical definitions of temperature and entropy was Einstein’s
1907 proposal that a solid could be considered to be a large number of identical quantum
harmonic oscillators, each oscillating with the same frequency w. This was a first attempt at
including quantum mechanical effects in the model of a solid. To get a feel for this model of
heat transfer, we will first do an example.

In-Class Exercise: Probability and Heat Transfer

You will need 4 chips and 2 index cards. Take two index cards and draw two circles about
the size of the chips on each card. Label the cards “A” and “B”. A and B will be your two
objects.

Now take 4 chips, which will represent thermal energy. For example, if Object A has 3
chips and Object B has 1 chip, then Object A is hotter than Object B. The circles on the
cards represent places in the object where thermal energy can be stored. It is ok to store
more than one chip on the same circle.

1. Let’s say A has 3 chips, and B has 1 chip. The two objects are far away from each
other, so heat cannot flow from one to the other. Count up the number of ways you
can arrange the chips for each object (each arrangement is called a “macrostate”).

Which macrostate has the most microstates (multiplicity €2), and thus the largest
entropy, defined as S = kpIn Q7

12



Solution: There are two ways to arrange the single chip in B: the chip can be in the
first circle, or the second circle.

The possibilities for Object A are the number of ways to partition 3 chips into 2
distinct spaces. There are 4 such possibilities: 3 chips in the first circle (3 4 0); 2
chips in the first circle, 1 in the second circle (2 4+ 1); 1 chip in the first circle, 2 in
the second circle (1+42); 0 chips in the first circle, 3 chips in the second circle (0+3).

As we will discuss below, applying the general formula yields

_B+2-1) o
M Emn Tt T e

1+2—-1)!
H2-Dt_,

2. Now bring the two cards together, allowing for the possibility of chips to jump from
one to the other. Boltzmann’s theory says that all states are possible: 4 in A and 0
in B, 3in A and 1 in B, etc. For each state, count all the arrangements of the chips
that are possible, and remember, you always have to have 4 chips on the cards—
we're not counting cases where some chips have fallen on the floor (conservation of
chips/energy!)

Which state is most likely? Which state has the highest entropy? Which way should
heat (chips) flow?

’ Description of Macrostate ‘ # of Arrangements (Microstates) ‘ S=kglnQ2
4inA,0in B
3inA 1in B
2inA,2inB
1in A,3inB
0inA,4in B

Solution:

] Description of Macrostate ‘ # of Arrangements (Microstates) ‘ S=kplnQ ‘

4in A, 0in B 5x1=5 kp(1.6)
3inA,1inB 1x2=38 kp(2.1)
2in A, 2inB 3x3=09 kp(2.2)
1inA,3inB 2x4=23 kp(2.1)
0Oin A, 4in B 1x5=5 kp(1.6)

The macrostate with the highest entropy is the one with the highest multiplicity of
microstates, which is the one with 2 in A and 2 in B, so that the thermal energy is
evenly spread out and the system is in equilibrium. We expect that if we start in
one of the other states, we should flow to thermal equilibrium, so we should flow to
the state with the maximum entropy.

The above problem represents a simple model of two Einstein solids, A and B, each with
N = Np = 2 oscillators, exchanging ¢ = 4 units of thermal energy between them. Recall
that the quantum harmonic oscillator is the quantum treatment of a particle in the harmonic
potential U(x) = %ka, where k is the spring constant related to the classical angular frequency
w of the simple harmonic motion as k = mw?. Classically, the particle oscillates back and forth.
Quantum mechanically, the probability of finding the particle at some location is given by the
wavefunction. The possible wavefunctions describe a series of equally spaced quantized states,

with energies

13



Consider the solid to be composed of N oscillators. Given a total amount of ¢ units of
energy in the solid, what is the multiplicity of the distribution of energy among the available
energy states of the system? We assume that all of the quantum harmonic oscillator levels are
considered equally probable, within the constraint of having a total of ¢ units of energy and
N oscillators. (So, in particular, the total internal energy is U = qhw + NQEW, since there are ¢

total energy quanta in the system plus the ground state energy of each oscillator.)

In the in-class exercise, you considered the case of two solids that each had 2 oscillators.
Just focusing on a single solid for the moment, consider a solid with 3 oscillators, and assume
the total energy is fixed at 3 units (the macrostate). The possible microstates are:

Oscillator: 1 2 3
Energy in each oscillator: 3 0 0| eee ||
0 3 0|]|eee]|
0 0 3|||eee
2 1 0|ee]e]
2 0 1|ee]|e
1 2 0|e|ee|
0 2 1||ee]e
1 0 2| ofee
0 1 2| |e]ee
1 1 1| ele]e

This macrostate (¢ = 3 units of energy amongst N = 3 oscillators) has multiplicity 10.

To obtain the general formula for the multiplicity, it is nice to think about this problem as
follows. We have ¢ units of energy (denote these by dots e), which must be distributed amongst
N slots, which can be represented by placing N — 1 boundaries amongst the circles. See the
table above for an example.

The possible microstates thus consist of the distribution of two types of items: ¢ circles and
N —1 boundaries. Therefore, there are g+ (N — 1) total slots in which to place a symbol, where
each slot has a binary choice: either circle or boundary. This rephrases the problem in terms
of our binomial coefficient! For N oscillators, the multiplicity of the macrostate with ¢ units of
energy is equal to the number of ways to arrange these ¢ + (N — 1) binary choices is

N -1 + N —-1)!
oty = (17D ) oD

Indeed, we may verify that for N = 3, Q(3;3) = % = 10. You may also verify that applying

this formula to the in-class exercise gives the correct multiplicities in that example.

Now, we wish to use this model to model a system of two interacting solids A and B.
Suppose we have two interacting Einstein solids that each have 3 oscillators. Assume the total
energy is fixed at ¢ = 6 units. (Also, assume that the transfer of energy between the solids
is slow compared with the transfer between oscillators within one solid.) There are 7 possible
macrostates of the combined system: g4 = 0 units of energy in solid A and ¢g = 6 untis of
energy in solid B; g4 = 1 units of energy in solid A and ¢ = 5 units of energy in solid B, and
so on. For each macrostate, we have already calculated the multiplicity of microstates for each
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individual solid (which each have Ny = Np = 3 oscillators):

(ga+ Ng—1)!
QA!(NA - 1)! ’

((g —qa)+ Np—1)!
(¢g—qa)!(Ng =11’

where we used ¢ = q4 + gp to write the multiplicity )5 in terms of the variable g4, which is
sufficient to label the macrostate. Then, the total multiplicity for each macrostate labeled by
g4 is the product of these two, Qiot(qa) = 240Qp. In particular, for this example the 7 different
macrostates have the following number of microstates:

Qa(qa; Na) = Qp(gp; NB) = Ny=3, Ng=3

qa Qa(qa;Na) | g QBB NB) | ot = Qa0
0 1 6 28 28
1 3 5 21 63
2 6 4 15 90
3 10 3 10 100
4 15 2 6 90
5 21 1 3 63
6 28 0 1 28

There are a total of 28 + 63 + 90 + 100 + 90 + 63 + 28 = 462 possible microstates amongst all
the possible macrostates. Note: this total number of 462 microstates is the same as what you
would get from 6 oscillators with 6 energy units regardless of whether you split them up into two
solids: Q(6;6) = % = 462. This makes physical sense, but also follows from the following
mathematical identity of binomial coefficients (called the Chu-Vandermonde identity):

(3)-2 (00650

qA

which holds for any nonnegative integer q.

The probability distribution for a given macrostate labeled by ¢4 = 0,1,2,3,4,5,6 is,

Qtot (QA)

and is plotted in Figure 1. Clearly, the number of multiplicities gets huge as I consider even
slightly more realistic solids. For example, the system of two interacting Einstein solids with
300 oscillators in A, 200 oscillators in B, and a total of 100 units of energy has a total of
9.3 x 10" microstates, with probabilities of each of the 101 macrostates being realized ranging
from ~ 3 x 1073% to ~ 7 x 1072, This huge number of microstates is pictured in Figure 2.
Notice that the plot of the multiplicity as a function of g4 is highly peaked around g4 = 60 (so,
gp = 40); this is precisely the point where energy is shared equally amongst all the oscillators.
Since solid A has 300 oscillators sharing 60 units of energy and solid B has 200 oscillators sharing
40 units of energy, on average, every oscillator has 1/5 a unit of energy. (Not actually possible,
but you get the idea!) This is precisely when the two systems are at thermal equilibrium.

As a simpler example where the two solids have equal sizes, consider this plot for N4y =
Np = N, so that there are 2N total oscillators with ¢ = g4 + ¢p total units of energy. We're
interested in the thermodynamic limit, where N is large. The average value of ¢4 is ¢/2, and
the plot of the multiplicity as a function of g4 is highly peaked around this average value,
while the width of the peak is relatively small — much much smaller than the total energy
(ignoring the ground state energy contribution, the total energy goes like U = ghw, and the
standard deviation is smaller by a factor of ~ 1/v/N). This means that for large N, we can

15



P(qa)
0.20 . .
0.15
0.10
0.05 :

: : : : : - Energy units g4 in A

1 2 3 4 5 6 oG

Figure 1: Probabilities of realizing the 7 different macrostates for the two-Einstein solid system
with 6 total oscillators and 6 total units of energy.

pretty confidently say that the energy units will be split evenly between the two sides, with
g4 = qp = q/2. This most likely macrostate corresponds to the equilibrium state of the system:
the state where the internal energy is evenly distributed between the two solids in contact. This
is an example of how things simplify in the thermodynamic limit: here, N is so large that
deviations from the most common macrostate are undetectable. There is a small chance that
the energy will be distributed unevenly amongst the two solids, but the probability of actually
realizing the most unlikely configurations becomes vanishingly small.

This is a nice model for exploring the statistical connection between thermodynamic entropy,
the number of microstates, and the temperature, as understood by Boltzmann. The second law
of thermodynamics establishes the concept of entropy as a property of a thermodynamic system,
and can be understood essentially as the following statements:

e Systems will spontaneously shift towards states of larger multiplicity.
e Multiplicity tends to increaes.

e Any large system in equilibrium will be found in the macrostate with the greatest multi-
plicity.

e If a system composed of a large number of molecules is allowed to evolve in isolation,
then with overwhelming probability, the system will evolve into the macrostate of largest
multiplicity and will subsequently remain in that state.

These statements are formalized by introducing the concept of entropy: the entropy S of
a system at fixed energy that is in a particular macrostate, with multiplicity 2 number of
macrostates associated to that macrostate, is given by,

where kp is Boltzmann’s constant, kg = 1.3807 x 10723.J - K~!. (This famous equation of
Boltzmann’s is engraved on his tombstone in Vienna!) Then, the 2nd law of thermodynamics
can be phrased as the statement that:

e The total entropy of an isolated system either increases or remains constant in any spon-
taneous (irreversible) process; it never decreases:
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Figure 2: Number of microstates realizing each of the 101 different macrostates for the two-
Einstein solid system with 300 + 200 total oscillators and 100 total units of energy.
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Figure 3: Entropy as a function of ¢4 for the example in Figure 2.

For instance, consider again our example system of the Einstein solids, with N4 = 300 and
Np = 200 total oscillators in each solid, so that there are 500 total oscillators, and total energy
units ¢ = 100 = g4 + ¢p. The entropy associated to each of the solids in a given macrostate is

Sa=kplnQy, Sg=kplnQp
and the total entropy is the sum of the two:
Siot = kpInQ40Qp = kp (IHQA —{—IDQB) =S4+ 5B

(We can also rewrite these in terms of the total internal energies of the solids, Us = ga(hw),
and Up = gp(hw).) Figure 3 plots these entropies as a function of the units of energy ¢4 in solid
A. The total entropy has a maximum precisely at the most likely macrostate, with g4 = 60.
This system therefore nicely realizes the expectation of the 2nd law of thermodynamics.

We have discussed that heat flows from objects with larger temperature to ones with smaller
temperature. Intuitively, the solid with more energy per oscillator is at a larger temperature
(the atoms oscillating “faster”), so that as thermal energy is exchanged the system evolves to
the state where the temperature of the two solids is the same. The statistical definition of the
temperature defines it in terms of the change of entropy as a function of internal energy: for a
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system at constant volume (as is the case for our Einstein solids),

1 a8

i et 1.4

T oU (14)
You can check from this definition that precisely at the maximum entropy, the two solids A and

B have the same temperature, T4 = Tp precisely at g4 = 60, which is where g%ﬁ = g%g. We'll

come back to the definition of temperature later.

1.3 Heat Capacity

As we have discussed, heat denoted by the symbol (Q) is the spontaneous transfer of energy
between two objects in thermal contact that have different temperatures. Heat capacity is
defined as a property of a particular object, that tells us how much energy it would take to
raise the temperature of that object by 1K. It answers the question: how much heat needs to
be supplied to an object to raise its temperature by a small amount d1'? We use the symbol C,
and it is given in units of energy per Kelvin, [C] = J - K1,

_dQ
- dT

Heat capacity: C

This is a useful, measurable characteristic of an object.

Specific heat is the property of a particular substance that tells us how much energy it
would take to raise the temperature of a known amount of the substance (in principle could be
by volume, mass, or number of moles) by an amount 1K. So, this is given as heat per unit mass
(or per unit volume) per unit temperature. Typically when we discuss specific heat capacity
we mean heat capacity C per unit mass kg, and use the letter c.

For example, the heat required to raise the temperature of 1 kg of liquid water by 1 K is
4184 J, so we would say that the specific heat capacity of water is ¢ = 4184 J K1 kg—!.

For our Einstein solids, their heat capacity can be found by expressing the internal energy
U as a function of their temperature 7', so that

oU
=7

WEe’ll see later that this is the general definition of the heat capacity of an object at constant
volume V', as is the case for our Einstein solids with constant number of oscillators V.

In-Class Exercise: Measuring Heat Capacity

To measure the heat capacity of an object, all you usually need to do is put it in thermal
contact with another object whose heat capacity you know.

Suppose that a chunk of metal (Unobtainium perhaps?) is immersed in boiling water
at 100° C then is quickly transferred to a Styrofoam cup containing 250¢ of water at 20° C.
Water has a specific heat capacity of 4.184 x 103.J - kg~! - K—!. After a minute or so,
the contents of the cup are 24° C'. Assume that during this time no significant energy
is transferred between the contents of the cup and the surroundings, and that the heat
capacity of the cup itself is negligible.

1. How much heat was gained by the water?
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Solution: Denote the specific heat capacity of water as ¢ = 4.184 x 103 J - kg~ - K1,
which is the heat capacity per unit mass. 250 ¢ of water undergoes a temperature
change of AT = (24+273.15)K —(20+273.15) K = 4 K. We can compute the change
in heat AQ as
AQ
C = c-mass = AT
= AQ = c¢(mass)AT = (4.184 x 103 J - kg~ ! - K™1)(4 K)(0.250 kg) = 4184 J

2. How much heat was lost by the metal?

Solution: By the first law (again, basically energy conservation!) the heat lost must
equal to the heat gained, since we assume no energy transfer to the environment.
AQ =4184J.

3. What is the heat capacity of the metal?

Solution: Since the contents of the cup came to 24°C, we know the temperature
change of the metal, AT = (100 + 273.15)K — (24 + 273.15)K = 76 K, so we can
compute

CAQ 41847

— P . 71
AT 76 K 5K

C

4. If the mass of the metal is 100 g, what is the specific heat capacity of the metal?

Solution: Specific heat capacity is C' per unit mass, so we can just divide:

C 55.J - K1
= = = 5507 - K~ kg™*
¢ mass 0.100 kg g

1.4 The Microscopic View of an Ideal Gas

Experiments on gases led to the following ideal gas law:

Ideal gas law: PV = NkgT (1.5)

where N is the number of molecules in the gas, P is pressure, V is volume, T is temperature,
and kg is Boltzmann’s constant, kg = 1.3807 x 10723 J - K~!. This law says:

e For a fixed amount of gas at a constant temperature (fixed N, T), its pressure is inversely
proportional to its volume.

e For a fixed amount of gas at constant pressure (fixed N, P), its volume is proportional to
its temperature.

e For a fixed amount of gas at fixed volume (fixed N, V'), its pressure is proportional to its
temperature.

While this is an empirical law, it can be derived from the microscopic view of the gas under
the following ideal gas assumptions: (1) that there are no forces between the molecules; (2) the
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molecules are point-like so we can neglect their size. This law describes a wide variety of gases
for which these assumptions are pretty good.

To gain some intuition for this law, it is helpful to relate a microscopic kinetic model with
the empirical ideal gas law. Consider the following setup: a piston of area A and length
L has 1 single molecule of mass m in it. The molecule bounces around with some velocity,
U = U, + Uyy + U,2. We assume that the collisions with the walls are elastic (preserve kinetic
energy), so the velocity and therefore kinetic energy K will remain constant,

K = —mv?.

2

This is going to be a model for an ideal gas with N = 1 molecule. (We are assuming that the
gas particle is a “point” particle, so it cannot vibrate or rotate, so its energy is entirely given
by this kinetic energy.)

The pressure exerted by the piston on the gas (or equivalently, the pressure felt by the
piston) is equal to the time averaged force applied by the piston per unit area,

The force is due to the particle colliding with the piston, which causes an acceleration to the
particle and changes its velocity. Let’s focus on just one dimension for the moment. If the
piston is applying force in the = direction, then this reverses the z-component of the velocity
from +wv,; — —v,, so that Av, = 2v,. The instantaneous force due to a collision is then
Av, 20Uy
F,=ma, =m At :mE
The time-averaged force is given by assuming that the velocity change happens over an interval
of time that it takes the particle to make a round trip inside the chamber, At = 2L /v,,

20, 20,

F:B = _— = _— =
(Fe) At m2L/vx

m

(o

so the pressure is equal to

2

(Fy  mv2 mo?

— T __

A LAV
for V' the volume of the chamber. Evidently, we see that this pressure is a kind of kinetic energy
per volume, P = 2K, /V. If we had many particles N, then there would be N times as much
pressure due to their individual kinetic energies,

Nmuv?

P=—"* = PV=2NK,

This expression is from our kinetic model of the gas. This can be compared to the ideal gas
law (1.5), PV = NkgT, which is from years of experiments on gases. If both are true, then we
have derived the nice relationship between the (z-component of the) kinetic energy of each gas
molecule, and the temperature:

1

We have identified the energy per degree of freedom of a particle as equal to %ICBT. Taking into
account all three components of the kinetic energy in three dimensions (i.e. the three degrees
of freedom) this expression is modified

1

1 1 3
K=K,+K,+K,= imvz + 5mv§ + imvg = §k:BT per particle
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(There is a more rigorous way to derive this relationship between the average energy per degree
of freedom of each particle and the temperature, known as the equipartition theorem, but this

provides the intuition for where it comes from!)

We have learned that the ideal gas law PV = NkpT microscopically comes from interpreting
the kinetic energy of the gas molecules as the thermal energy of the gas, related to the gas’s

pressure and volume as

U= ;NkBT = gPV for an ideal monatomic gas.

2 The First Law of Thermodynamics

(1.6)

Textbook readings: (a first reading is due before Lecture 4; most pertinent to Lecture 4)

e Ch. 11, all

Learning Objectives:

e Energy, Heat, Work and the 1st Law: know the various statements of the 1st law, be

comfortable with the partial derivatives

2.1 The First Law and Equations of State

We return to the first law of thermodynamics, which essentially states that energy is conserved,

and heat and work are both forms of energy. First some terminology:

e As we have already seen, heat () is thermal energy in transit. We’ll denote the change
in thermal energy by AQ), so that AQ is the heat supplied to a system (positive for heat

supplied, negative for heat subtracted).

Heat transfer can take place by three methods:

— Conduction is heat transfer through physical contact; for instance, heat transferred

between the burner on a stove and the bottom of a pan.

— Convection is the transfer of heat by the motion of or within a fluid, for instance due
to the expansion and rising of a warmer fluid versus a colder fluid, causing currents

that transfer heat.

— Radiation is heat transfer from the emission or absorption of electromagnetic radi-

ation (photons), for instance by the warming of the Earth by the Sun.

e Work is a second form of energy transfer between two systems that is distinct from heat
in the following way: while heat transfer occurs spontaneously once thermal contact is
established, work is done by one system on another when it directly alters some parameter
of the system other than temperature. Basically, any energy transfer that is not heat is

work. We’ll denote by AW the work done on a system, so that AW is positive for
done on the system and negative when the system does work on its surroundings.

work

Work can take many forms; a common example of which is expansion or compression
(volume change). The work done by compressing a gas (of pressure P and volume V') by
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a piston of surface area A is related to the force F' = PA applied by the piston, as'

AW = Fdz = PAdz = P(—dV) = dW = —PdV

In this equation, the negative sign is so that the work dW done on the system is positive
when dV is negative, so when the gas is being compressed. We will explain the notation
d rather than d in a moment.

In equations, the first law states that the total change in the internal energy U of a system
is equal to the heat supplied to the system plus the work done on the system,

AU = AQ + AW | (2.1)

The differential version of this equation is

[ dU =dQ +dW | (2:2)

For instance, consider the work done to go from some initial state to some final state through
compression/expansion of the gas,dW = —PdV. The PV diagram gives a visual representation
of the work done on the gas as the volume changes. If we know how the pressure changes as a
function of volume, we can integrate this function, i.e. calculate the area under the PV curve
in a plot of P versus V:

AW done on the gas = —(area under PV curve)

Some special cases:

e If P is constant as a function of V', then this is indeed equal to just —P(V;—V;) = —PAV.
This is an isobaric (constant pressure) process.

e More generally, if P is a nontrivial function of V, we need to compute the integral.
For instance, suppose we have an ideal gas that undergoes isothermal process, 7.e. a
process that occurs at constant temperature. The pressure as a function of the constant
temperature and changing volume is,

NkpT
V

PV = NkgT = constant = P =

so that the work done is

NkgT V2 qv

dW = —-PdV = — dV = AW = —-NkgT —
vi V

(2.3)

This graph is hyperbolic, and we can compute

1
AW = —NkBT (ln V2 —1In Vl) = NkBTln 7
2
'In this equation, we are assuming that the piston is frictionless, so that extra heat is not dissipated in the
process of applying force to the gas. In this case, the change process is reversible.
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Exact versus inexact differentials Here we need to be careful, since dQ) and dW are in-
exact differentials, rather than exact differentials. The difference is illustrated by the following
example: If a system is described by only two parameters, x and y, and f = f(z,y) is a function
of x and y, then

O 4oy 2 g,

+

df = 8y

If (z,y) change from (zg,y0) to (x1,y1), then the total change in the function f can be given
by integrating the differential, which is completely independent of the exact path taken since
df is an exact differential; it only depends on the values of f at the endpoints.

(1,y1)

Af = df = f‘ L) p(ay 1) — (20, o)

CEO yo
(w0,y0)

In particular, this implies that the integral of an exact differential over a closed loop is always
zero,

Far=0 since flao,m) - (0.0) =0

We would call f(z,y) a function of state, where the state of the system is described by the
parameters x,¥, since it depends only on the initial and final states, and not the path taken
between those intermediate and final states.

However, consider a differential of the form
dg = a(z,y)dx + bz, y)dy

where g = g(z,y), and where a and b are two general functions of z and y. If a = 9g/0x
and b = 0g/0y, then this would be an exact differential, since it would correspond to the total
derivative dg. But if this is not the case, then when we try to integrate dg to get the total
change in the function g, the result is going to depend on the specifics of the path taken — on
the specific functions a and b.

In general, whenever there is some amount of heat exchange involved, the amount of work
done on a system depends on external factors such as the means of applying work, and not
only on the initial final states. So, in general we should write dW as an inexact differential, to
remind ourselves that we will need to take into account the process by which the work was done
and not just the endpoints. Of course, this also means that in general heat is not a function
of state, so we need to write dQ) rather than d@ and specify the path that heat is exchanged.
Put together, however, in general the internal energy U is a function of state; in general, the
internal energy is a function of temperature and volume, U = U(T,V'), and we can write the

exact differential as
oU oU
dU = — | dT — | dV 2.4
(3r), ™+ (5v), @4

So, when no heat is exchanged (AQ = 0) and the process is adiabatic, the work done equals
the change in internal energy AU = AW, and we can replace the inexact differential dW with
an exact differential dW. Similarly, if no work is done in a process (AW = 0), the heat transfar
is equal to the change in internal energy AU = AQ), and we can replace d@QQ — dQ.
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2.2 Heat Capacity and the 1st Law

Next we would like to understand in greater detail how adding heat can change the internal
energy of a gas. Recall that we have defined heat capacity as the property of an object that
tells us how much energy it would take to increase the temperature of that object by 1 K. Since
heat exchange in general depends on the path by which it is supplied (as we have said, heat is
in general not a function of state), in applying the general definition “C' = d@/dT” we need to
specify the details of the process: for a gas, for example, we can calculate the heat capacity at
either constant volume or constant pressure, defined as

o (8), ()

Using the second law, we can understand how these definitions are related to the change of the
gas’s internal energy. Starting with (8.1) and using the first law with dW = —PdV, we can

rewrite
ﬂJ:(gg)vdf+<gg>Tm/:ﬂQ—Pm/ (2.6)
:$ﬂ2:<gg>vdT+<<gg>T+P>dV
() (), )

This is an expression valid for any change in 7" or V. When V is held constant, however, we can
drop the second term proportional to dV/dT, so that we identify the heat capacity at constant

volume with
_(dQ _(0U
o= (a),~ (5r),

On the other hand, the heat capacity at constant pressure is in general larger, since some of the
heat is used up in work done in changes of volume. In this case, it is simplest to start with the
expression dQ) = dU + PdV to identify

(), (), ),

Note, another useful way to write these formulas is to express the difference as,
ou 1%
Cp—Cy = — Pl = 2.9
r-cv=((av),+7) (or), %)

Example: Heat capacities of an ideal monatomic gas. What are the heat capacities
Cy,Cp for an ideal monatomic gas?

Solution: As we have seen, the internal energy U of an ideal, monatomic gas is due to kinetic
energy, and can be written as a function only of temperature as (see (1.6))

U:SN@T (2.10)
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Therefore, even though in general we would expect U = U(T, V), in this case it depends only
on T, so

oUu
— =0 for an ideal monatomic gas
ov ),

and the change in internal energy is given by
dU = CydT

since we can drop the second term in (2.6). This means that we can easily find the specific heat
Cy of the ideal gas by differentiating (2.10) with respect to T, as

ou 3

On the other hand, to compute Cp using (2.8), we can use the equation of state PV = NkgT
to differentiate V' with respect to T at constant P:

oUu oV
r= (aT>P+P<aT>P

3 0 (NkgT
=—-N P—

o Ve T 8T< P )P

3 Nkp 5

So, we see that Cp > Cy. (We could have equivalently used (2.9) to find Cp — Cy = Nk,
yielding the same result.)

The ratio of Cp to Cy is called the adiabatic index ~, defined by

C
adiabatic index: v = C—P (2.12)
14

Therefore, we see that the adiabatic index of an ideal monatomic gas is

Cp _ 5/2NkgT _5 . ..
=—=—"—"_"2"_=_for an ideal gas.
7= ¢y T 3/2NKpT 3 &

More generally, for a non-monatomic ideal gas where U = aNkgT, you can follow through this
derivation to find that v = 1+ é, so it’s useful to write things in terms of v in case we are
dealing with a non-monatomic gas.

Aside: Ideal gas law per mole. The ideal gas law PV = NkpgT holds for a gas of V
molecules. Another useful way to write this equation is to rewrite it per mole, where 1 mole of
the gas is equal to Avogadro’s number N4 = 6.022 x 10?2 molecules of the gas. We can rewrite
the number of molecules N as the number of moles n,, times N4 molecules per mole,

N =n,N4y
Defining the gas constant R = Nkp = 8.31447 J - K~! - mol ™!, the ideal gas law becomes
PV =n,RT.

So, one mole of an ideal gas obeys the equation PV = RT.
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In-Class Exercise: Expanding a Balloon

You are given an expandable balloon of Helium (a pretty good ideal, monatomic gas) with
initial volume of 1L, and an initial pressure of 1 atm. For some strange reason, you decide
to expand the volume to 3L while simultaneously raising the pressure in direct proportion
to the volume.

(a)

Sketch P vs V.

Solution: We are raising the pressure in direct proportion to the volume, so the plot
will take the form P =V + b where b is the y-intercept. Since the slope of the curve
is 1, and P, = 1 we can compute

atm  (Py— 1)atm
slope i B-1)L 'y =3 atm
Since P, =1 at V; =1, b is just zero, so the curve is
P=V.
P(in atm)

3__

P=V
1--

»V(in L
1 3 (inL)

Calculate the work done on the gas.

Solution: The work done on the gas is minus the area under the curve, which is
(2L) x (latm) 4 $(2L) x (2atm) = 4L - atm, or equivalently,

3 V23
AW——/ Vv =——-| =—(3"/2-1/2) = 4 atm - L
1

Since 1 atm = 101,325 Pa, 1 Pa = 1J/m?, and IL = 0.1 x 1073 m?3, we can convert
AW = —4 atm - L =4 x 101,325 x 1072 J/m> - m® = —405 J

Since the gas has expanded, the work done on the system is negative — this makes
sense, since this corresponds to the case that the gas has actually done work to
expand.

Calculate the change in internal energy of the gas.

Solution: We know that the total change in internal energy is related to the heat
supplied plus the work done, AU = AQ + AW. However, we have not yet figured
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out the heat supplied. Intuitively we expect that there must be some heat supplied,
since according to the equation of state,

PV = NkpgT

as we change the pressure and the volume on the left-hand-side from F;V; = 1 to
PyVy = 3-3 =9 atm-L (while keeping N the number of molecules the same), the
temperature 7" on the right-hand-side must also be changing. Since the temperature
is changing, the internal energy is changing, since recall that for an ideal gas we have
that,

3
dU = Cy dT, C’v=§NkB

Using the equation of stat PV = NkpgT and substituting P = V as we found in part

(a):

PV V2 2V dv
T=-——= dT =
N,ICB N,ICB = NkB

and we can integrate:
Vis3lovav 3, Vi=3 3
AU =C 2% =-(9—1)atm- L
V/WIL N]{,'B 2 Vi=1 2( )am
= 12atm - L = 12(101,325)(1073) J = 1216 J

Of course, since dU is an exact differential, this only depends on the endpoints, and
we could have equivalently evaluated:

3 PV; PV,
AU = Cy (Ty ~ T;) = 5Nk (Afk; - NkB)

3

=5 (90— Datm-L=12atm - L = 12(101, 325)(107%) J = 1216 J

In either case, we compute the total change in internal energy AU = 1216 J.

(d) Calculate the heat added or removed during this mysterious and wonderful process.

Solution: Finally, we can use

AU =AQ+AW = AQ=AU - AW =1216.J — (—405)J = 1621 J
Note: 1 atm = 101,325 Pa, and 1 Pa = 1.J/m3, and 1 L = 1073 m?.

Another nice example of a problem like this is as follows.
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Example: A cyclic process Consider the above example of a cyclic process for an ideal gas:
the gas first expands from V; to Vy from A — B — C, and then contracts from V; back to V;
from C'— D — A. What is the net work done during this cycle?

We can break this up into two pieces: first the work done from A — B — C, and then the
work done from C' — D — A. In each case, the work done is equal to minus the area under the
curve:

1
—~AWaL o = §(area of circle) 4 (area of rectangle ACV}V;)

1
—AWe_p—a = — |(area of rectangle ACVV;) — §(area of circle)

where there is an overall extra minus sign in the latter expression since we are integrating in
the opposite direction, from V; — V; rather than V; — V. Adding these two contributions
together,

— AW cycte = —AWapc — AW p—a = (area of circle)

The total work done is (minus) the area enclosed by the curve, since the other pieces cancel
out. This is equal to 7 times the radius in the P-direction, %(Pf — P;), times the radius in the
V-direction, §(Vy — Vj):

T
—AWran cycle = Z(Pf - PZ)(Vf - V;)

This is a general result: for a cyclic process, the net work done is (minus) the area
bounded by the loop.

Follow up question: what is the total change in the internal energy of the gas in this process?

The internal energy of an ideal gas depends only on its temperature, dU = %N kpdI. So,
the change in internal energy as the gas goes between 717 and 75 is proportional to the change
in temperature:

3 3
AU = S Nkp(Ty = T1) = 3 (P2Va = PVA)

This means that for the cyclic process where we start and end at the same values of P and V,
AU =0!

AU full cycle = 0
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3 Isothermal and Adiabatic Processes

Textbook readings: (a first reading is due before Lecture 5; most pertinent to Lecture 5):

e Ch. 12, all

Learning Objectives:

e Processes: Isothermal and Adiabatic: be able to calculate W, @, AU for constant P and
V' processes

Throughout this section we will assume that processes are reversible; so for instance there
is no friction.

An isothermal process is a process that occurs at constant temperature, AT = 0. Recall
that for an ideal gas, dU = C'ydT’, so an isothermal expansion of an ideal gas has no change in
U, and we can set

AW = —dQ = —PdV

To compute AW and AQ we need to integrate, which we did above in (2.3); substituting for
P = NkpT/V and integrating [ dV/V =1InV, we can calculate the change in heat as,

Va
AQ:NkBT/ ﬂ :NkBTlnE (3.1)
vi V Vi

On the other hand, an adiabatic process is one in which there is no flow of heat; the system
is thermally isolated, so d@) = 0, and the first law implies that dU = dW. Since for an ideal
gas dU = CydT, and using dW = —PdV, this allows us to obtain a relationship between the
temperature and volume as:

NkgT AT NkpdV

dT = —PdV = —
Cv v T Oy V

av

Recall that for an ideal gas, Cyy = 3Nkp (see (2.11)). Now that we've isolated a function of T
on the left-hand-side and a function of V' on the right-hand-side, we can integrate

[T N
T1 T CV Vl V

Exponentiating both sides,

P>
N
I
>
S
oo\lto
4
>
=
P>
>
wlro
I

This is related to the coefficient we called the adiabatic indez as,

Cp 5 2
TTCv T3 3~
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so a nice way to write this expression is as
TVl =1

or equivalently, using T' = ]\%;a
PV7 = Nkp = constant

It’s useful to leave these relations in terms of «y, since ideal gases that are not monatomic will
have different values of ~.

To summarize, we have discussed the following processes for an ideal gas:

Isobaric expansion of ideal gas: P = const
Isothermal expansion of ideal gas: P = NkgTV !
Adiabatic expansion of ideal gas: P = NkgV "

4 The Second Law, Entropy, and Heat Engines

Textbook readings: (a first reading is due before Lecture 6; most pertinent to Lectures 6-8):

e Ch. 13, all

e Ch. 14 sections 14.1-14.3
Supplementary references:

e This is a nice video on heat engines, with some worked problems on efficiency at the
end https://www.youtube.com/watch?v=X3cuxQEc2gs.

Learning Objectives:

e Heat engines: Carnot, Otto, Diesel
e For a cycle: ASsystem =0, ASuniverse > 0

e The thermodynamic definition of entropy and the 2nd law: dS = dQ/T and its use, for
systems at constant 71" versus systems undergoing a change in T’

4.1 The 2nd law and Cyclic Processes

The essence of the second law of thermodynamics is that there is a preferred arrow of time in
the macroscopic world. Hot coffee cools down, a ball on top of a hill falls down the hill, etc.

Before we state the thermodynamic version second law, it will be useful to again emphasize
our focus so far on processes which are reversible: that can work in both directions of time,
or in other words, can be run backwards. This is the thermodynamic equivalent of frictionless
motion in mechanics.

For example, we’'ve been considering a closed loop on a PV-diagram, where we start at some
(P1, V1), take one path to (P», V2), and then take another path back to (P,V7). As we have
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P, V)

>V

discussed ,the first law states that AU = 0 along this whole cycle (this is the statement of
energy conservation!). Going one way around the loop, work is performed by the system, by
absorbing heat from its surroundings: it converts heat into work. Going the other way around
the loop, work is done on the system, and the system emits energy as heat. It is useful to think
about these cyclic processes; run the right way, they convert heat into work.

The second law is usually expressed in one of two forms:

e 4 la Lord Kelvin: No process is possible whose sole result is the complete conversion of
heat into work. In other words, it is easy to convert work to heat, but much harder to go
the other way around!

e 4 la Clausius: No process is possible whose sole result is transfer of heat from a colder
body to a hotter body. In other words, heat flows from hot to cold. This views the second
law as a statement about the direction of heat flow as a system approaches equilibrium:
heat flows from hot to cold.

Historically, the practical impetus for the development of the science of thermodynamics in
the 19th century was the advent of heat engines, which led to these scientists’ important works.
As we will see, these statements will allows us to define a quantity called entropy.

We call an engine is a cyclic process that converts heat to work. A heat engine takes some
heat from a hot reservoir (for instance, a coal fire), does some work, and dumps the rest of the
heat into a cold reservoir (for instance, the atmosphere). The cost of running the engine is heat,
and the benefit is work.

Kelvin’s statement is that we can’t extract heat from a hot reservoir and turn it entirely
into work: it also deposits some heat elsewhere (gives some back). There is no such thing as a
perfect engine. The energy available for work is the difference between the heat extracted and
the heat lost,

~AW = AQ = Qi — Qo

A refrigerator does the opposite: it takes heat from a cold reservoir and some external
work, and dumps the rest of the heat into a hot reservoir. In this case we supply work in order
to transfer heat from a cold environment (inside the fridge) to a hot one (outside the fridge).

Because we are supplying work, we get around Clausius’ statement that heat normally flows
from hot to cold; this is why your electricity meter goes up! Clausius’ statement is the statement
that there is no such thing as a perfect refrigerator. The cost of running the refrigerator is work
(done by expending electricity), and the benefit is heat.
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Figure 4: A Carnot cycle.

Denote by d@ the heat supplied to the system at each point of the closed cycle. (So, if the
system releases heat, this quantity is negative, and if it absorbs heat it is positive.) It is a fact
about reversible cycles that the total heat absorbed must obey:

Z % = j{ (? =0 reversible cycle (4.1)

cycle

To get some intuition as to why this is true, let us consider the Carnot engine. A Carnot
engine is an idealized version of a heat engine that is reversible, run in a cycle, and where all of
its heat exchanges take place at a source temperature Ty and a sink temperature 7. Then, the
distinguishing characteristic of the Carnot engine is that heat exchanges with the surroundings
are carried out at only two temperatures. Basically, the two reservoirs are assumed to be so
large as to have an infinite heat capacity, so that their temperatures remain constant cycle after
cycle.

The way that the Carnot engine can operate between only the two temperatures Ty and T
is by undergoing a series of isothermal and adiabatic processes. Again, the net heat absorbed by
the system is AQ = Qg — Q¢, which is equal to minus the area inside the PV curve. Consider
the pictured Carnot cycle going from A - B - C — D — A.

1. On (A — B), the system undergoes an isothermal expansion at a constant hot temperature
Ty. The gas is doing work on its surroundings to expand, and absorbing some heat Qg
from its surroundings.

2. On (B — (), the system undergoes an adiabatic expansion with no heat exchange. Since
no heat is exchanged but the gas is still allowed to expand, the temperature decreases
from Ty — Tc.

3. On (C — D), the system undergoes an isothermal contraction at the constant cooler
temperature T¢. The surroundings do work on the gas to compress it, and some heat Q¢
is dumped into the surroundings.

4. Finally, from (D — A) the system undergoes an adiabatic contraction with no heat
exchange. Since no heat is exchanged by the gas is squeezed, the temperature rises back
from T — Tq.

We can add up the total dQ)/T around the cycle as follows:



There is no heat change on the adiabats, but on the isotherms there is. Recall that we have
already shown in (3.1) that the heat transfer of an ideal gas on an isotherm is related to the
gas’ temperature and change in volume V; — V5 as:

Va

NkgT In —=
Q = Nkp n s

Therefore, actually Qg and Q¢ are simply related to each other:

1% V;
Qu = NkgTyln—=, Q¢ =—NkpToln —
Vi Va
Qu Qc i Vi
“H _%C _ NkgT (ln— —ln—) =0 4.2
Tu  To S A T 42)

Thus, we see explicitly that the heat absorbed on a Carnot cycle of an ideal gas satisfies (4.1).
It turns out that this statement will actually hold true for any reversible process; the total heat
exchanged obeys §dQ /T = 0.

What this means is that if we reversibly change our system from say A — B, the quantity
ffd@ /T is independent of the path taken from A to B. This quantity is a function of state!
We call this function of state the entropy, S:

Baq .
AS =S(B)—-S(A) = / T for reversible changes
A

or in differential form,

Q)

ds = T for reversible changes

Then, AS = 0 for a closed cycle, for instance for the Carnot cycle. Amazingly, this thermody-
namic definition of entropy is the same as the statistical one we saw earlier, S = kpIn ). We
will see this later in the course.

A more general statement applies to any path, reversible or irreversible, using Clausius’
inequality for any cyclic process:

Clausius’ inequality: 7{ — <0 (4.3)

(We will derive this inequality a bit later in this section.) For example, suppose we have two
possible paths between A and B: irreversible path (1), and reversible path (2). We can compute:

aQ _ [ dQ JQ d;Q_
P77 (S(B) ~ 5(4)) <0

(2)

:,/ (AS = S(B) — S(A))

Now, suppose our system is thermally isolated, so that d@QQ = 0. Then the left-hand-side is
actually zero, and

‘AS >0 for any thermally isolated system‘

For an isolated system where heat is not being exchanged, entropy either stays the same (for a
reversible change) or increases (for an irreversible change). Considering the universe to be an
isolated system, this means in particular that the entropy of the universe never decreases!
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For instance, you might consider your isolated system to be a hot cup off coffee, and the
surrounding environment. The hot cup of coffee releases heat, which leads to ASgystem > 0.
The surroundings absorb heat from the system, leading to ASguroundings < 0. However, you
will find that when you add up the contributions, you will get

ASuniverse = Msystem + Ssurroundings >0.

In-Class Exercise: The entropy of the universe increases

A system at temperature Tg is placed in contact with a large reservoir at temperature Tg.
They both end up at temperature T since the heat capacity, C, of the system is so small
compared with that of the reservoir. Calculate an expression for ASyniverse-

Now, suppose the system is a cup of hot coffee at 100°C, and the reservoir is the
environment at room temperature, 20°C. Suppose there are 250 grams in the cup, and
that the specific heat capacity of the coffee is the same as water, ¢ = 4190.J - kg~! - K1
What is ASuniverse !

Hint: Remember, C =dQ/dT.
Solution:

The heat transferred from the reservoir into the system is AQ, which is minus the heat
transferred from the system into the reservoir. To compute the change in entropy of the
reservoir (which remains at a constant temperature Tr), we compute

o faQ _ 1 _ —AQ _ C(Ts —Tkg)
ASeservoir = / Th = Tr /dLQ - Tr - Tr

To compute the change in entropy of the system (which changes from Ts — Tg), we
need to actually do an integral:

_[aQ  [(T™Rcdr ., Tg
ASsystern—/j-,—/TS T—Cln?s

Then, we can add up

T T
ASuniverse =C <111 Ti}; + sz — 1>

Now let’s put in the numbers. Supposing the cup of m = 2509 = 0.25kg of coffee cools
from 100° to room temperature, 20°, and the specific heat capacity of the coffee is equal
to that of water, ¢ =4190.J - kg~ ! - K1,

C=mec=4190J - kg™' - K~1.0.25kg = 10475 J/K .

Then,
Tgr 204+ 273 K
ASsystem = C'ln — = (1047. K)ln —— = —252. K
Ssyste CnTS (1047.5.J/ )n100+273K 52.9.J/
C(Ts —Tg) (373 —293)K
A reservoir = —————— = (1 47. Ky——=2 K
S, Tr (10475 J/K) 203 I 86.J/
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As expected, the entropy of the coffee decreased as it cooled, since heat was flowing out,
while the entropy of the surroundings increased as it absorbed the heat coming off the
coffee. In total, the entropy of the universe increased in this irreversible process:

ASuniverse = ASsystem + ASreservoir = +33.1 J/K

The below figure plots these different entropies as a function of T's/Tr. ASuniverse 1S
always greater than or equal to zero. The region to the right of Ts/Tr = 1 corresponds to
the case that the system is cooling down (so ASystem < 0); the region to the left is when the
system is heating up (so ASsystem > 0). This coffee example has T's/Tr = 373/293 = 1.27.

AS/C
2.
coffee
example
ASreservoir
1
ASuniverse
s ; T</T,
05 A0N15 20 SR
-1+ ASsystem

4.2 The 1st Law Revisited

Let us put our definition of entropy to good use. Sinced@ = T'dS (for reversible changes), and
dW = —PdV (for reversible changes), we can rewrite the first law as

dU = TdS — PdV (4.4)

This is a very useful version of the first law, especially because it holds even for irreversible
paths. This is a bit of a confusing point: we wrote this equation by using equations that were
true only for reversible paths, but once we wrote it down in this form we got rid of all the
inexact differentials; the left-hand-side is an exact differential, and the right-hand-side only
contains exact differentials, dS and dV (because S and V are functions of state). So actually,
this is a version of the equation

ou ou
du(S,V)y=\{—==| dS — | dV
5= (55), %+ (57),
which is to say that U(S,V) is a function of state. By comparing with (4.4), what we have
achieved is identifying these partial derivatives with T" and — P, respectively.

We will deal more with equations like this later.. but for now it is useful to try an example.
Let’s see that two systems at different temperatures that are able to exchange energy will reach
equal temperature only when the total entropy is maximized.

35



PaA TA

Oy
Ty |5 B 9B
N Q
T, X
D C

Figure 5: A Carnot cycle in two diagrams.

Example: Consider two systems with pressures P; and P», and temperatures 17 and 75, that
exchange some internal energy AU and some volume AV. What is the total change in entropy
of the combined systems?

Using the first law, we can write for each system that,
P 1

dS = =dV + =dU
T + T

This holds for each system, system (1) and system (2). One system loses volume (—AV’) and
energy (—AU), while the other gains volume (+AV') and energy (+AU). The change in entropy
for each system is,

Py 1

dsS; = ﬁ(+AV) + ﬁ(JFAU)
s 1
dSy = E(—AV) + E(—AU)

so that together,

_ (BB 11
AS—dSl—}—dSQ—(Tl TQ)AV+<T1 T2>AU

We know that entropy always increases in any physical process. Thus when equilibrium is
achieved, the entropy will have achieved a maximum, so AS = 0 for the combined system, so
that the joint system can’t increase its entropy any more. This is only achieved when 77 = T5
and P; = Py, which is the equilibrium state of this joint system.

4.3 Efficiencies

Let us return to the Carnot engine, which is described equally well on a PV and TS diagram
as in Figure 5. The total work done on the system over one cycle is

AW = —(Qu — Qc)

so the total work output by the engine Woutput has the opposite sign,

Woutput = QH - QC

36



It will be useful to relate Qg and Q¢ to the temperatures of the reservoirs, Ty and T¢o. We
can do this by noting that along the isotherms, we know that AQ = NkgT InV;/V;, and along
the adiabats TV7~! is a constant. In particular:

A— B: QH:]\U{?BTHIHE
Va

B—C: TyVy ' =TV
v
C—D: Qc=-NkgTeln-2
Ve
D—A: TV =Tyv]T!
Dividing the two adiabatic equations by each other leads to:

VB Vo
Va Vb

Dividing the two isothermal equations by each other and substituting this previous result leads

to:

v, v,

Qu _ Tyl  Tylhyl Ty

Qc Tc ln“;—D Tc ln% Tc
C B

This equation, that for a Carnot engine ‘ Qu/Qc =Tu/Tc ‘, is something we previously found

in (4.2) when we were adding up dS around the whole Carnot cycle, and turns out to be a very
useful equation.

The concept of efficiency is important to characterize engines. We want to ask, what is the
best you can do to convert heat to work? In other words, what is the ratio of the benefit to the
cost? We define the efficiency 7 as this ratio,

benefit

efficiency n = :
cos

For a heat engine, the benefit is the work you get out Woyipus, and the cost is the heat you
put in, while for a refrigerator the opposite is true,since the benefit is “heat sucked out of the
refrigerator” and the cost is the electrical work, so we define

. Woutput . QC
Tlheat engine = > Trefrigerator =
QH I/Vinput

This ratio for a heat engine always must be less than 1: the work output cannot be greater than
the heat input. So, the efficiency of a heat engine is always a number between 0 and 1, where
1 corresponds to 100% efficiency (not possible, though desirable!).

We immediately see that the efficiency of a Carnot engine is,

o _QH_QC_l Qc_l Tc
rmot — — ~ = — 11— =1—-="
e Qu Qn Ty

Since T < Ty, the efficiency of even this idealized engine is always less than 100%. Actually, it
turns out that this is the efficiency of any reversible engines operating between two temperatures:
the ratio Qr/Qc¢ is the same for all reversible engines.
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Why is Carnot the best? A Carnot engine is the best engine. Or more precisely, of all
engines operating between two heat reservoirs, a reversible engine is the most efficient. To
prove this statement, let us consider a second engine (call it engine Not-Carnot) to our original
Carnot engine set to reverse. The Not-Carnot engine also operates between the same two
temperatures Ty and T¢, performing some work Woutput, but in contrast to the Carnot engine
is not reversible. We suppose that the Not-Carnot engine absorbs some amount of heat Q’;
from the hot reservoir, and deposits Q¢ into the cold reservoir. We use its work output as work
input that powers the Carnot engine.

The net effect of the two engines is to extract @ — Qg from the hot reservoir, and by
conservation of energy, deposit the same amount Q% — Qu = Q¢ — Q¢ into the cold reservoir.
But, Clausius’ statement tells us that we must have @, > Qp; if this were not true, then
energy would have been moved from the colder body to the hotter body. The efficiency of the
Not-Carnot engine is, by definition,

_ Qu—Qc
TINot-Carnot = Q,
H

With a bit of algebra, we find

n—Qc _ Qu—CQc
Qy Qy

But, since Q% > Qp, this is always smaller than the efficiency of the Carnot engine:

QH—QC<QH—QC

TINot-Carnot = 7 > = T]Carnot
Q H QH

QIH - QH - Q/C - QC = TINot-Carnot =

Therefore, the efficiency of the Carnot engine is always the largest possible.

The proof that all reversible engines working between two temperatures have the
same efficiency 7camot is a corollary of this argument: if we suppose that the Not-Carnot
engine was actually reversible, we could run the argument in reverse (reversing the Not-Carnot
engine and on the left, and going back to a normal Carnot engine on the right), and we would find
that NNot-Carnot = MCarnot, Which with our previous inequality implies that Ncarnot = Not-Carnot
if the Not-Carnot engine is reversible.
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4.4 Clausius’ Theorem

We can now return to a point we assumed last lecture, that for any closed cycle,
d
7{ TQ <0 for any cycle

with the equality for a reversible cycle. We already proved that the equality held true for a
Carnot cycle, but now we can make the argument in general. Remember that this inequality
was important because it allowed us to define a function of state, the entropy.

The idea of the proof is that by Carnot’s theorem, we know that an irreversible engine that
operates between two temperature T and T¢ is less efficient than the Carnot engine. We can
use the same notation as we did above: assume the Carnot engine extracts heat Qg and dumps
heat Q¢, and the Not-Carnot engine extracts heat Q’; and dumps heat @, (but we will not
hook up the two engines to each other). Both engines do the same amount of work; the work
output is Woutput = Q@ — Qc = Q@ — Qcr. We wish to find an inequality involving

7{@‘@ _Qy Q¢

T Ty To

for this cycle. So, we can write

Qu—Qc=Qy — Q¢
Qu Qo _Qu-CQc Q¢ Qu-Qo_Qy
Tw Tc Ty Ty Tc Tc
b—QC+QH—Q}{
Ty Tc

1 1

~ @ - (- 7

We used that Qr/Tr = Qc/Tc to derive the last line. Now using Carnot’s theorem, Q' > Qp,
and since Ty > T, 1/Ty < 1/T¢, so the total expression is negative:

Qu —Qc = (Qy — Qu) <Ti{_7}c> <0

Therefore, we have found Clausius’ inequality,

f2

We showed this for an irreversible cycle operating between two temperatures, but you can break
up a general cycle into bits where the temperatures change a little bit each time, and this result
will continue to hold true.

4.5 Equivalence of Clausius’ and Kelvin’s Statements

Kelvin’s statement rules out perfect heat engines, and concerns the conversion of heat into
work: we cannot have Woutput = @, so no heat engine can have perfect efficiency. Clausius’
statement rules out perfect refrigerators, and concerns the transfer of heat from a colder to
hotter body: We cannot have a process that only takes Q¢ without work input, which would
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yield a refrigerator with 100% efficiency. (Note, refrigerators can have efficiencies greater than
1!) These statements are actually equivalent; if one is violated, then so is the other. Why?

Suppose there is a machine that violates Clausius’s statement by taking heat Q¢ from a
cooler to hotter region without requiring work, i.e.  a perfect refrigerator. Conservation of
energy would say that such a Clausius-violating-machine would take Q¢ out of the cold reservoir
and deposit the same amount Q¢ in the hot reservoir.

Hook up a Carnot operating between these two reservoirs, taking heat Qp from the hotter
one and dumping Q¢ into the colder one, producing work Q7 —@Q¢. Then, the combined system
takes Qp — Q¢ from the hot source, and produces work equal to Qg — Q¢, dumping net 0
heat into the cold sink. This net result is an engine with 100% efficiency. So, the existence of
a perfect refrigerator implies a perfect heat engine. The opposite is also true: the existence of
a perfect heat engine implies a perfect refrigerator. So, the statements are equivalent.

4.6 Efficiency of Heat Pumps
Refrigerators and heat pumps are like heat engines running in reverse. In the following problem,
we’ll explore how to define the efficiency of a heat pump.

In-Class Exercise: Heat pumps

A heat pump is a kind of ‘inverted refrigerator’ that can be used to heat your house. The

way it works is that you have an engine that does work on some substance in order that
it may extract some heat from the outdoors and dump it into your house.

Draw a schematic diagram of a heat pump. Keeping in mind that you would only do
this when it is colder outdoors than indoors, calculate a coefficient of performance (the
ratio of benefit to cost) for such a device for a typical wintertime situation. Would a heat
pump work better in Florida or New York?

Hint: Coeflicients of performance are usually larger than 1, unlike efficiencies.

Winput cost

Cold Reservoir

Heat pump Hot Reservoir

Oc

QH benefit

Solution: For a heat pump, the benefit is Qp, the heat added to the house. The cost
is Winput, the work we must apply (typically in the form of electrical work) to accomplish
this. So, a coefficient of performance or efficiency would be defined as,

_ Qu
VVinput

From the first law, since Winpuy = AQ = Qu — Qc, Qu > Winput, so this coefficient is
always larger than 1.

40



For a heat pump fitted with a Carnot engine, since Qi /Qc = Tr/Tc, we can rewrite

_Qu  Qu/Qc _ Tu/Tc _  Tu
Qu—-Qc Qu/Tc—1 Ty/Tc—-1 Tu—Tc

Ui

The efficiency n is larger when T — T is smaller. So, say that you want to keep your house
a nice 72° Fahrenheit, or about 22° C' = 273422 = 295 K, so we set Ty = 295 K. In Miami
Florida, the outside temperature right now is probably larger than this, so we wouldn’t
even be able to use the heat pump. But let’s say that the outside temperature in Miami
was 20°C', and let’s compare with our outside temperature of 0°C here in Poughkeepsie.
We would compute:

295
jami = —————— = 147.5
MMiami = 595503
295
TIPoughkeepsie — m =134

The smaller the temperature gap, the better the efficiency out of the heat pump, so a heat
pump operating in Miami

What’s actually happening with a real world heat pump? The pump consists of two sets of
coils (an evaporator and a condenser), with a motor that moves refrigerant (the working fluid)
from one side to the other and back.

1. The working fluid moves through the heat pump. As it goes through the expansion valve,
it goes from being a warm, high-pressure liquid to a cold, low-pressure fluid. So in an
actual heat pump, T is the temperature of the heat pump’s refrigerant, which is able to
be colder than the outside air temperature, allowing heat transfer to the working fluid.

2. As the refrigerant passes through the evaporator, it absorbs heat from the outside air —
even though the outside air is cold, the refrigerant is even colder! Since refrigerants with
very low boiling temperatures are chosen, even on a cold day, the outdoor temperatures
will be warm enough to boil the refrigerant into vapor.

3. The refrigerant gas reaches a compressor, which increases the pressure on the gas, raising
its temperature.

4. Finally, the high pressure, high temperature gas goes through the condenser, which con-
denses it to a warm liquid, releasing heat — including the heat that the gas absorbed from
the outside heat exchanger. This heat warms the inside air, and the high pressure, high
temperature refrigerant is ready to go through the cycle again.

Test results of the best heat pump systems are around 7 ~ 4.5.

4.7 More Examples of Heat Engines

One of the most popular engines is the internal combustion engine used in cars. Useful work is
produced from burning fuel inside the engine’s combustion chamber at a high temperature and
pressure.

An Otto cycle models the combustion engine, a typic of internal combustion engine. It is
named after German engineer Nicolaus Otto, the first person to build a working four-stroke
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Figure 6: A diagram of an electric heat pump, from www.sciencelearn.org.nz.

engine in 1876. The Wright brothers used a gasoline-powered four-stroke internal combusion
engine to power their aircraft that was based on early automobile engine designs using the Otto
cycle.

The Otto cycle consists of:

(0) First there’s an intake stroke, where gasoline vapor and air are drawn into the engine.

(1) Then there’s a compression stroke, where the gasses compress adiabatically, and both
pressure and temperature increase.

(2) Combustion (spark), where the fuel-air mixture ignites, with rapid heating at essentially
at constant volume.

(3) Then there’s the power stroke, where the gas expands adiabatically.

(4) The valve opens, gas escapes to the exhaust pipe with heat rejected from the air, which
we can model as rapid cooling.

The Diesel cycle is similar to the Otto cycle, except fuel is ignited by heat that is generated
during the compression of air in the combustion chamber at constant pressure, in contrast to
igniting the fuel-air mixture with a spark-plug.

4.8 Worked Example: A Non-Idealized Heat Engine

Real engines can be much more complicated than idealized engines; they do not behave perfectly
reversibly, and whatever is being used to power the engines changes temperature in a much more
complicated way.

In an idealized model of a heat engine, the two reservoirs are assumed to be so large as
to have an infinite heat capacity, so that their temperatures remain constant cycle after cycle.
Suppose, however, that you have a Carnot engine that uses two somewhat smaller bodies as its
hot and cold reservoirs. Initially the two bodies with equal heat capacities, C, are at Ty and
Tc. As a result of the engine moving heat from the hot reservoir to the cold reservoir, however,
the two systems will eventually come to the same temperature T’ after some amount of time.
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(a)

Use the first law to find an expression for the total work done by this engine during this
time. Your answer should be in terms of C, Ty, T, and T7.

Hot Reservoir

T,

Cold Reservoir

C

Solution: At one step in the cycle: an amount of heat d@Q, is extracted from the hot
reservoir, an amount of work dW is produced, and some heat dQ. is dumped into the cold
reservoir. (We’ll use lowercase h,c to denote heat extracted / dumped in one step, and
similarly for the temperature changes at each step.) Because the heat capacities C' of the
reservoirs are finite, their temperatures will change as heat is extracted from / added to
them. In the infinitesimal change, the changes in temperature of the reservoirs are related
to the heat capacities as,

dQn = —CdTy,, dQ. = CdT,
The negative sign in the first equation is because heat is flowing out of the hot reservoir,

so that C' has a positive sign as dT}, is negative.

By the first law, the work performed in this step is
dWoutput :th _dQc = _CdTh - Cch

These steps are done incrementally between starting temperatures Ty, T, until they both
reach a final temperature Ty. The total work done by the engine in this time is:

Tf Tf
AI/Voutput =-C dly, — C dTl,. = -C (Tf — Ty + Tf — TC)
Ty Tc

= C(TH + Tc) — QCTf

Use the second law and the unique characteristic of the Carnot engine to determine a
value for T in terms of Ty and T¢.

Solution: For a Carnot engine in particular, we know that at each step of the process,

aQn _dq.
T T.

This is just the version of Qp /Ty = Qc/Tc that holds at each step in a Carnot cycle:
that the ratios of the heat extracted / dumped to the temperatures of the reservoirs are
fixed.
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We can integrate this relation over the process from the starting temperatures to the final
temperature,

dQn _dQ. _  —CdT, _ CdT,

Th Tc Th B TC
o Tuam, o /Tf CdT,
Tf Th Tc Tc
T T
In=2 -1 tl
Ty Tc

Since C' is the same for both the hot and cold reservoir in this problem, it canceled from
either side of the integral, and we are left with the simple relation:

TuTe =17

This determines the final temperature in terms of the initial ones.

How is this related to the second law of thermodynamics? At each step, the magnitude of
the change in entropy of the hot reservoir equals the magnitude of the change in entropy
of the cold reservoir (since this is a Carnot engine with dQp, /Ty, = dQ./T.), where the
entropy of the hot reservoir decreases as it releases heat (cools), and the entropy of the
cold reservoir increases as it absorbs heat. The total change in entropy for the combined
system is zero:

Tr —aqy, T
hot reservoir - Th TH
TraqQ T
AScold reservoir = / ?C =Cln Tff >0
TC Cc C

AShot reservoir T AScold reservoir — 0

since Ty /Ty = Ty/Tc. This makes sense — this is a cyclic process and the total change in
the entropy of the cyclic process should be zero!

Substituting into the result of part (a) yields,
AI/Voutput = C(TH +1Tc — 2\/’1%) = C(\/ T — Tc)2

Is your answer greater than or less than the temperature that the two bodies would attain
if they were in simple thermal contact, rather than connected by an engine?

Solution: How does this compare with putting the two bodies in simple thermal contact?
If we put the two bodies in thermal contact, assuming no loss of energy to the environment
the heat gained by one is equal to the heat lost by the other. (Recall we did an in class
problem like this!) Since C'= AQ/AT and both bodies have the same magnitude of AQ
and same heat capacity C, their temperatures are related as

Ty +Tc

C(Tf—Tc):C(TH—Tf) = Tf: 9

Since the bodies have the same heat capacity, their final temperature will just be the

average of their starting temperatures. Note, this is the same result we get by setting the
work output to zero in our problem: AWquput = 0 in part (a) implies % =Ty.
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This is quite different from the relation Ty = /TyTc derived for our engine. We can
compare the ratios of Ty to T¢ in each case, which are always larger than 1 (since the
colder body heats up by some amount):

(2) i () [
TC thermal contact 2 2 TC’ TC engine TC

Since Ty /T > 1, we find that the final equilibrium temperature from simple thermal
contact is larger than in the case where we do work with the engine. This makes sense;
since heat was converted to work with the engine, the hot reservoir cooled down more in
that case.

5 The Four Thermodynamic Potentials

Textbook readings: (a first reading is due before Lecture 9; most pertinent to Lectures 9-10):

e Ch. 16, all

Learning Objectives:

e The thermodynamic potentials: U, H, F, G; obtaining differential expressions dU, dH, dG, dF’;
obtaining partial derivative definitions; obtaining and using Maxwell’s relations; Gibbs as
available energy

5.1 The Four Potentials

We have developed quite the collection of thermodynamic variables for describing the state of
a system: volume V', pressure P, temperature T, internal energy U, entropy S. We’ve seen
that certain quantities are naturally expressed in terms of some variables instead of others; for
example, we have seen that labeling the energy as U (S, V) is nice because then everything is a
function of state (recall (4.4)):

dU =TdS — PdV

This equation tells us that changes in U are due to changes in S or V, so we can write U =
U(S,V) to show that U is a function of S and V. This equation implies that if S and V" are held
constant for the system, then U is also a constant, since dU = 0. This equation also implies
that we can identify T" and P with partial derivatives of U:

ou ou
dU = <65>Vd5+ (W)de

U U
- T_<<95>v’ P_<5V>S

These equations hold for any reversible or irreversible process, although we’ve also seen that
some relations will only hold for reversible processes. For example, in an isochoric (constant
V') reversible process, dV = 0 and we can replace dQQ = T'dS, so that

reversible with dV =0 : dU =dQ = CydT
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On the other hand, in an isentropic (constant entropy) reversible process, dS = 0 and we can
replace dW = —PdV so that

reversible with dS =0 : dU =dW

and the total work done by the system is equal to the change in internal energy of the system.
Of course, since for reversible processes dS =dQ /T, so a reversible process at constant entropy
is an adiabatic process with no exchange of heat. So far in this course we’ve had practice using
all of these relations in different contexts.

Enthalpy What if we have a system held at constant pressure — what is the natural thermo-
dynamic quantity to consider? The answer, it turns out, is the thermodynamic potential called
the enthalpy, H. We define enthalpy as,

H=U+PV
so that its differential satisfies:
dH = dU + dPV + PdV =TdS — PdV +dPV + PdV =TdS + VdP

So, we see that the natural variables for enthalpy H are S and P,

|H=H(S,P);, dH=TdS+VdP| (5.1)

and the partial derivatives of H with respect to S and P are identified with the coefficients of

(5.1),
(), ()

What'’s a situation where enthalpy might be useful? Consider a constant pressure (isobaric)
process. Then the dP term cancels, and

dH =TdS (isobaric)

If the process is reversible, we can use T'dS =d(@). This equation then says that if you add heat
to the system at constant pressure, the enthalpy goes up. Substituting d@QQ = C'pdT, the change
in the enthalpy is

Ty
AH_CP/ dT = Cp(Ty — T})
Th

The change in enthalpy is exactly equal to the heat transfer. The enthalpy roughly measures
the total internal energy plus work required to make space for it, and is an extremely useful
quantity for engineers.

Helmholtz free energy Next up: what is the natural object to consider at constant temper-
ature T7 The answer is the Helmholtz free energy function, F. We define the Helmholtz
function using

F=U-TS
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so that taking the differential,
dF =dU — SdT — TdS = (TdS — PdV) — SdT — TdS = —SdT — PdV
so that the natural variables for F' are V and T
F=FWV,T);, dF = —=S8dT — PdV

Again, we can take the total derivative to relate the partial derivatives of F' at constant tem-
perature and volume to the coefficients:

oOF oF
F= (22 ar4 (&£
a <6T>Vd +<8V>Tdv

OF OF
(7)== (&)=

For example, suppose we have a reversible isothermal process. Then, F' represents the amount
of reversible work done by the system in an isothermal process:

reversible isothermal: dF = —PdV = AF =AW

so that we identify

The Helmholtz free energy is a measure of the amount of energy that is free to do work at fixed
temperature.

Gibbs free energy Finally, we can define the Gibbs free energy function G as,
G=H-TS
so that
dG =dH — SdT —TdS = (TdS + VdP) — SdT' — TdS = —=SdT + VdP
We see that the natural variables of G are T' and P, so that
G=G(T,P), dG = -SdT' + VdP

Yet again, we can go through the same exercise to identify the partial derivatives:

oG oG
<M>P—‘S’ (ap)JV

Let us summarize:

e The internal energy U = U(S,V) is conserved in any isentropic isochoric process, and
satisfies

|dU = TdS — PdV |

e The enthalpy H = H(S, P) is conserved in any isentropic isobaric process, and satisfies

|dH =TdS + VdP|

e The Helmholtz free energy F' = F(T,V) is conserved in any isothermal isochoric process,
and satisfies

|dF = —SdT — PdV |

e The Gibbs free energy G = G(T, P) is conserved in any isothermal isobaric process, and
satisfies

|dG = —SdT + VdP]
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5.2 Conceptual Meaning of Free Energy

These different thermodynamic potentials are useful precisely because they describe how much
energy is available (“free”) to do useful work, depending on what constraints we apply to the
system.

Suppose a system is able to exchange heat with its surroundings, and if the volume changes,
do work on its surroundings. Suppose this system is in contact with surroundings that are at
some ambient temperature Ty and pressure Fy. If some amount of heat d@) enters the system
from the surroundings, the entropy change of the surroundings Sy and system S satisfy

dQ dQ
— dSo+dS >0 = dS>—
To’ o= — T
where the second equation is the second law of thermodynamics, which implies the inequality

in the last equation.

dSy = —

Now, we want to use this inequality in the first law of thermodynamics to ask about the
energy available for the system to do thermodynamics work. To do this we’re going to separate
out the work done by the surroundings on the system automatically due to the volume change
of the system, —PydV', from the mechanical work added to the system, dW.

We can write the first law as follows:

dU =dQ +dW — PydV. = dW =dU + PydV —dQ
Using the inequality d@) < TpdS from earlier, this is
The right-hand-side of this equation is a total derivative; we can define
A=U+ PRV -TyS = dA=dU+ PydV —1ydS
so we can write this inequality as

aw > dA

We call A the “availability”: changing A changes the free energy available for doing work. If the
system is mechanically isolated, then dA < 0, which says that changes in A are always negative:
all processes will tend to force A down to a minimum value. Equilibrium is achieved by
minimizing A.
Specifically, we have the following different types of scenarios:
e If a system is thermally isolated with fixed volume, then no heat can enter the system
and the system can do no work on its surroundings, dU = 0. Then, dA = —TdS, so that

the inequality dA < 0 implies dS > 0. In other words, the equilibrium state is found by
maximizing S.

e If a system is held at fixed volume and temperature, then dA is precisely identified with
the Helmholtz free energy F', so the equilibrium state is found by minimizing F'.

e If a system is at constant pressure and temperature, we can identify dA with dG, so that
we must minimize the Gibbs free energy G to find the equilibrium state.

So, depending on what’s held fixed, these different quantities are the quantities that are
extremized in the equilibrium state.
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5.3 Maxwell’s Relations

So far, to identify partial derivatives of the thermodynamic potentials with other thermodynamic
quantities, we have used the fact that if f is a function of x and y, f(z,y), then

_ _(9f of
f=flz,y) = df—<8$>ydm+<ay>xdy

We can also take a second derivative to get useful relations: since df is an exact differential, the
order in which we take the partial derivatives of its variables does not matter:

0% f B 0% f
0xdy  Oyox

We can readily apply these relations to the potentials and their thermodynamic variables. For
instance, consider the energy, whose partial derivatives we previously identified as:

oU U
T=(>= P=—(%
(5s), - (&),

Taking another derivative would let us write

U U
250V ~ VoS

(o), = (5s),

Similarly, we can consider the derivatives of the Gibbs free energy,

oG oG
(aT>P—‘S’ (ap){v

Taking another derivative and setting,

so that:

’*G  0*G
OTOP  OPOT

oS\ oV

OP ),  \oT)p
and so on. These are called Maxwell’s relations, and they relate a partial derivative of
something that can be easily measured (like the change in volume with temperature at fixed
pressure, which can be easily measured in a laboratory), to something that is hard to measure

(like, the change in entropy with pressure at constant temperature). These are not equations
that should be memorized: they are equations that should be derived if you need them.

allows us to relate:

One example of where this is useful is finding useful expressions for heat capacities in terms
of various partial derivatives. For example, consider the definition of CYy/,

_(0Q\ .08
CV‘(azr)v‘T(aT)v
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where we used d@) = T'dS in the second equality. Taking a derivative with respect to V,
oCy\ T 0?8
ov ), ovor
o\ _(op
ov ), \oT )y’

<8Cv> 0 <8P> <82P>
il — 7 (== -7 ==
ov ), “oer\ar), aT? ),

Of course, for an ideal gas Cy was a constant, and the pressure depends only linearly on the
temperature, so both the left-hand-side and right-hand-side of this expression would be zero;
but for a more general substance this is a nontrivial relation. You will do some examples like
this on your homework.

since a Maxwell relation relates

this allows us to express

Another useful trick for manipulating partial derivatives is the reciprocal theorem,

This allows me to change exchange the variables being differentiated, up to an inverse.

Expansivities and Compressibilities A generalized susceptibility quantifies how much
a particular variable changes when a generalized force is applied. An example of a generalized
susceptibility is (%)m, which answers the question: keeping z constant, how much does the
volume change when you change the temperature? For example, the fractional generalized
susceptibility % (%) ¢ known as the adiabatic expansivity Sg, measures the fractional volume
change when you change the temperature at constant S. In the following exercise, you will

derive a formula for B¢ in terms of easily measurable quantities.
In-Class Exercise: Adiabatic Expansivity
The goal of this problem is to obtain a formula for the adiabatic coefficient of volume

expansion Bg, also known as the adiabatic expansivity, of a material as a function of T', V|

the heat capacity C', and one known partial derivative: (g%)V‘

1 /0V 0S5
5S—v<aT>s’ CV—T<aT>V

Key definitions:

Suggested Steps:

1. Begin with the Helmholtz function ' = U — T'S. Find a differential formula for dF
containing only 2 terms on the right-hand-side.

Solution:

F=U-TS = dF=dU—-TdS—SdT = (TdS — PdV)—TdS — SdT
= —PdV — SdT
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2. Establish 2 partial derivative definitions based on dF.

Solution: Since F' is naturally a function of V' and T', we can relate

OF OF OF OF
r=(=— =) ar =) =-P, (=) =-
o= (5v), 2+ (o) = ()= (5r), =

3. Establish a Maxwell relationship based on the 2nd derivatives of dF.

Solution: Taking another derivative, we need to have

O’F  9°F
ovVoTr — oToV

o), =),
(o), = (@),

which allows us to relate:

O (oEY __ (08 9
ovi|p\oT ),  \ov ), oT

This is one of the Maxwell relations.

4. One of the terms in the Maxwell relation should give the inverse of one of the partial
derivatives that we need. Use the reciprocal theorem,

@), @

Solution: We have managed to relate the inverse of one of the quantities we need,
(g%)v’ to another partial derivative. We can invert it using the reciprocal theorem:

() - !
or |4 (gi)v
which allows us to relate:

<§5>T: (gi)v B (&én - @g)v B (8§)T

to relate it to the term we need.

5. Now mess with the other term from the Maxwell relation using the reciprocity the-
orem to get something with the heat capacity in it. Hint: Use S = S(T,V), and
consider dS.

Solution: Since S = S(T, V), we can write

08 08
5= (%) e (%) w

Cy 1
S
r (57)v
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where we replaced the partials with the quantities we wish to solve for 8g in terms
of. When dS = 0 so that S is a constant, we can set the left-hand-side to zero and
differentiate with respect to T" at constant S:

Cy 1 <8V)
0= "+ 27 | 77
T (gTTD)V T /)5

Using the definition of Bg, we finally have a relation for 8g in terms of the desired

quantities:
Cy 1 Cy (0T
0=y L ovge = o=V ()
T (g%)v VT \OP ),
This is one of the relations you are asked to prove on your homework, in Exercise
(16.2).

There are four main types of general susceptibility:

e As we just discussed, the adiabatic expansivity Ss quantifies how much the volume of a
system changes with temperature in an adiabatic process:

1 /0V
=7 (5r),

e Similarly, the isobaric expansivity Sp quantifies how much the volume of a system changes
with temperature at constant pressure:

1 /oV
=5 (ar),

e The isothermal compressibility quantifies how much the volume of a system changes with
pressure, at constant temperature:
1 /0V
kp=——| ==
= vi\er),

This is defined with the minus sign in order to keep kp positive, since increase in pressure
leads to a decrease in volume.

e The adiabatic compressibility quantifies how much the volume changes with pressure in

an adiabatic process:
o= L (Y
ST v \orP )4

Example: heat capacities of a non-ideal gas With these definitions, we can answer:
what is the general relation between C'p and Cy?7 We learned that for an ideal monatomic gas,
Cp — Cy = Nkp. What about for a general substance?

The simplest path forward is to start with the last step of the in class exercise: consider
S =S(T,V), so that
oS oS
dS=\|—| dT — | dV
(o7), 7+ (7).
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where recall that the heat capacities can be related to derivatives of the entropy (using dQ =

TdS) as,
a5 a5
N —7(92
Cv <6T>v’ cr <6T>p

Therefore, if we divide out by dT' at constant pressure,

05\ _ (95 (95 (v
or ), ~\ar), "\av ) \or ),
Cp Cv [0S
T -7t <W>T (VBp)
o3 opP

We can use the Maxwell relation (W)T = (a—T)V and a partial derivative identity,
oz\ __(or) (02
oy ), N 0z y oy ),
to simplify the remaining derivative term as follows:
os\ _(op
ov )y, \oT )
__ (9P (9V
- \ov /), \oT ),

(57) p BpV

=- =+
(%)T rrV

which finally allows us to express:

VTS}

Cp Cy [0S Cy VB
KT

T T 8V>T(WP)ZT+ o o POV

This equation is the generalization of Cp — Cyy = Nkp for an ideal monatomic gas.

What does this equation mean?

e Cp — Cy is proportional to the volume V, so it is an extensive quantity.
e Since B]% is positive, and « is positive for all known substances, Cp > Cy always.

e For solids and liquids, Bp is small, so we often “lazily” just talk generically about “heat
capacity” and don’t specify Cp versus Cy,. But for gases, Sp can be large. For example, see
this site https://www.engineeringtoolbox.com/specific-heat-capacity-gases-d_
159.html for a list of heat capacities of various gases.
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6 Expansions of Gases

Textbook readings: (a first reading is due before Lecture 10; most pertinent to Lectures
10-12):

e Ch. 14 sections 14.4-7 (a first reading is due before Lecture 10; most pertinent to
Lectures 10-12)

e Ch. 26 section 26.1 and Ch. 27, all (a first reading is due before Lecture 12; most
pertinent to Lectures 12-13)

Learning Objectives:

e The free expansion (joule expansion) of the ideal gas; the statistical basis for entropy; the
entropy of mixing

e The difference between real and ideal gases: The van der Waal’s gas; the free expansion
(Joule expansion) of the non-ideal gas; Joule-Kelvin expansion (throttling)

6.1 The Free Joule Expansion

A nice example which illustrates some subtleties with how to compute changes of entropy of a
system is the joule expansion. We consider the following situation: one mole of an ideal gas is
confined in a thermally isolated container. After opening a tap to another equally sized container
(also thermally isolated), the gas fills the entire container so that the volume is doubled. What
is the change in entropy of the gas, the surroundings, and the universe?

This entire process is thermally isolated (A@Q = 0), and no work is being done on the gas
(AW = 0), and so naturally AU = 0. Since U for an ideal gas only depends on the temperature,
this means that T of the gas does not change in this process. Both P and V' do change, however;
since the volume is doubled from V; — V; = 2V, the pressure is halved:

PV;=RT = P;(2V;) = P;=D/2.
What is the change in entropy of the gas?

You might first be worried that since AQ) = 0, we should also have ASg,s = 0. However,
we stress that this is an irreversible process, since the gas is in a non-equilibrium state after
the partition is suddenly removed — we cannot use dQ) = T'dS valid for reversible changes to
conclude that the entropy change should be zero. Instead, in general dQ < T'dS with equality
only for reversible changes, so since AQ = 0 in this process, we should have 0 < TAS, or in
other words that ASg,s > 0 for this irreversible process.

So, we know the gas should gain entropy, but how do we compute this gain? Now we can
use the fact that entropy is a function of state: the change in entropy between two endpoints
can be computed along any path separating the endpoints... including along a reversible path!
We might as well compute the change in entropy for a reversible isothermal expansion of the
gas from the initial state V; to final state 2V; (during which the gas actually does work on
the environment), since this is something we know how to compute and will give us the right
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answer. Therefore, we compute:

AU=0 = TdS=PdV for isothermal expansion

f 2V; 2V;
/ s — PdV:/ RV pig
i Vi T v |4

We conclude that ASg,s = RIn2 > 0.

What about the change of entropy of the universe? If we were actually computing the change
in entropy of the universe for the reversible isothermal expansion, we should have ASypniverse = 0
(true for a reversible adiabatic process), so we would need to have that ASsurroundings = —ASgas-
In other words, the isothermal expansion is not thermally isolated in itself, so we need to also
include the negative entropy change of the environment.

However, the free joule expansion is by assumption a thermally isolated process in itself,
so there is no entropy change of the environment. For the irreversible free joule expansion we
expect that ASuniverse > 0, and indeed since the gas is thermally isolated, it constitutes the
whole entropy change of the universe: ASgas = ASuniverse = RIn2.

To summarize, this example demonstrates all of the following facts:

e Entropy is a function of state, and so entropy change between two endpoints can be
computed along any path, whether reversible or irreversible. We can use this to our
benefit to take advantage of the reversible formula d) = T'dS, even for a process which is
adiabatic.

e The entropy of a thermally isolated system always increases (for irreversible processes) or
doesn’t change (for reversible processes). In general, AS > AQ/T so is always > 0 for a
thermally isolated system.

e The entropy of non-thermally isolated systems can decrease (like it does for the surround-
ings in the case of isothermal expansion of the gas), as long as the entropy of the universe
satisfies ASyniverse = 0. We have of course at this point seen many examples of the entropy
of individual systems decreasing consistent with the entropy of the universe continuing to
increase.

This example also provides a nice way to make contact with the statistical definition of
entropy, that the entropy of a system in a particular macrostate is computed from the multi-
plicity of microstates 2 as S = kpln{2. To count the microstates in the Joule expansion, we
note that after the valve is opened each gas molecule can be either on the left-hand-side or
right-hand-side of the container. Since each molecule has 2 choices, and there are Avogadro’s
number N4 of molecules in a mole of gas, there are 2V4 ways of arranging the gas molecules.
Thus, the number of microstates associated with the gas being in a container twice as big as
the initial volume is larger by a factor of 2/V4, so that the additional entropy is

AS =kgn2¥4 = Nykpln2 = Rln?2

precisely as computed from the thermodynamic definition of the entropy.

6.2 The Entropy of Mixing

We can generalize the example from the last subsection to two different ideal gases (1 and 2)
in separate vessels with volumes V; and V5, with total volume V; + Vo = V. Suppose the gases
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start at the same pressure and temperature P and T, and then we open the valve between the
vessels, allowing the vessels to spontaneously mix. The number of particles N1 and Ns of each
gas satisfies,

Vi Va

PVi=NikpT, PV =DNokgT, PV =NksT = Ni=¢N, Na=¢N

where N = N7 + N is the total number of particles.

Even though this is an irreversible process, just as for the Joule expansion we can imagine
going from the starting state to the final state via a reversible route via an isothermal expansion
of gas 1 from V; to V and of gas 2 from V5 to V. The total change in the entropy of the gases
is computed as,

Vpdv Vpdv Vv 1%
AS = - —— —kg (N In— + Nyln —
v T —I—/V2 T B< 1HV1+ 2HV2>

Suppose V7 is some fraction V' of the total volume, for x a number between 0 and 1, so that
Vs is equal to (1 — z)V. This entropy of mixing is then given by,

AS = —Nkp(zlnz + (1 —z)In(l — x))

where we substituted V; = 2V, Vo = (1 — 2)V, and N; = 2N, Ny = (1 —2)N. As a function
of the fraction z, this expression looks like an upside down parabola centered around = = 1/2.
There is a positive entropy change whenever some mixing is involved (with 0 < z < 1), and
the entropy change is maximum at = = 1/2, when the initial volumes are equal and doubled by
opening the valve. This additional entropy comes from the fact that each molecule can exist in
additional microstates: for every microstate with a molecule of gas 1 on the left there is now
an additional one with a molecule of gas 1 on the right.

However, we have made a crucial assumption that the gases are distinguishable. If the gases
are not distinguishable from one another, physically we would expect that mixing them would
have no observable consequence, so that there is no increase in the entropy. The mixing should
only increase if the gases are distinguishable.

6.3 Real Gases: Van der Waals Forces

So far in all our discussion involving gases, we have assumed an ideal gas that satisfies the
equation of state

PV = NkgT < PV = npoesRT (6.1)

Of course, real gases don’t behave quite like this — for one thing, at cold enough temperatures
real gases were liquefy, at which point the system is no longer described by the equation of state
(6.1). For another, the ideal gas law ignores intermolecular interactions — the fact that the gas
molecules actually (weakly) attract each other.

A common model of real gas behavior is the van der Waals gas, which makes the following
two modifications to the ideal gas law. First, it accounts for the particles interacting with each
other, so that the internal energy of the gas needs to account for these interactions in addition
to the kinetic energy of the gas molecules. In particular, it accounts for van der Waals forces be-
tween the molecules, which are weak, distance-dependent, short-ranged attractive interactions.
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Second, it accounts for the finite size of gas molecules, so that there is less overall free volume
for the molecules to move around in. The equation of state for a van der Waals gas is,

2 N2
(P + a’”moles) (V - nmolesb) = nmolesRT <~ (P + a) (V - bN) = NkpT (62)

V2 V2

where again, nyoles is the number of moles in the gas, and a and b are parameters that when
set to zero, yield the ideal gas equation. (We’ve also written the version of this equation valid
for N molecules.) We can schematically understand this equation as follows:

e The constant b accounts for the volume excluded due to the finite size of the molecules,
since the molecules are only free to explore a volume not already taken up by other
molecules. If there are N molecules in the gas, and each has some finite volume, then
there will be some reduction in the volume V' available for the molecules to roam around
in, so that the effective available volume is reduced to V' — bN for some constant b.

e The constant a parameterizes the strength of the intermolecular interactions. Its origin
can be explained as follows: suppose N molecules of gas in a volume V. The number
of nearest neighbors is then proportional to N/V. Attractive intermolecular interactions
between molecules lower the total potential energy by an amount proportional to the
number of molecules times the number of nearest neighbors,

N2

Upot = CL7

so that if you change V', the energy changes by,

Upor(V N2dV
Wpor = pdté Y= V2

This change in the energy due to the interactions can be thought of as being due to an
effective change in the pressure of the gas,
N2
AUpot = —PegdV =  Peg = 75
The pressure P that you measure for the gas is equal to the pressure neglecting the
interactions, plus this effective pressure.

Isotherms for a van der Waals gas have a richer behavior than those of ideal gases. Multi-

plying out the equation of state to get P as a function of V at fixed temperature and N, we
find:

NkgT aN?
V-bN V?

P=

Plotting this equation of state on a P-V diagram for various isotherms leads to the following
behavior:

e For larger temperatures, the isotherms look somewhat ideal-gas like, like P ~ 1/V (so
that we can ignore the a/V? term). At high enough temperatures, the attractive forces
between the molecules play no role.
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e As the temperature is lowered, they change shape to have a wiggle with both a minimum
and a maximum. In this case the attractive forces take effect, so that at small volumes
there is a region where it looks like compressing the gas can actually reduce the pressure
(the compressibility 7 is negative!), or increasing the pressure can increase rather than
decrease the volume. This is a highly unstable situation — if we were able to create such
a state, it wouldn’t be around for long since a tiny perturbation would lead to a rapid
change in its density.

This shift happens below a critical temperature Ty, which occurs precisely when is an inflec-
tion point in the curve so that both the first and second derivative of the pressure with respect
to the volume is zero:

P\ _ _ _ NksT +2aN2
ov)r — (Va—bN)?2 V3

and

9*P _ - 2Nk 6aN?
V), (Ve—bNpP Vi

Solving these two equations allows us to solve for the inflection point, which occurs at

8a

el =57

What’s going for T' < T, is that we see a phase transition. In the high density part (low
volume) of the diagram before the minimum, the state of the system is actually a liquid. The
large negative slope means that it is difficult to compress the state; we need to add a lot of
pressure to change the volume only slightly. This is characteristic of a liquid phase of matter.
On the other hand, in the low-density high volume region after the maximum, the system is
in a gas state. The naive middle solution with negative compressibility 7 is unstable, and
represents a region in which gas and liquid coexist at once. So, the van der Waals model
predicts the existence of liquids as the gas is compressed for low enough temperatures!

It be useful to plot the liquid-phase diagram on the P-T plane. Here, the co-existence liquid-
gas region that exists for small enough T is squeezed onto a line. If we’re sitting in the gas
phase and increase the pressure a little bit at fixed T' < T, we undergo a phase transition and
jump to the liquid phase. Above the critical point, there isn’t actually a sharp phase transition
/ distinction between the liquid and gas phases. At fixed pressure, the stable low-temperature
state is the liquid, and the stable high-temperature state is the gas, without a sharp transition.
Right at P, T there is what’s called a second-order phase transition, where the susceptibility
becomes infinite.

6.4 Cooling Real Gases

The Joule expansion for non-ideal gases Consider the free Joule expansion of a general
non-ideal gas: we allow the gas to expand to a larger volume, with no work done and no change
in internal energy, with the entire system isolated from its surroundings so there is also no heat
exchange. For an ideal gas, U only depends on the temperature, so the temperature of the gas
does not change in this process. But for a non-ideal gas, we expect that the temperature might
change — how do we calculate it?
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To do so, it is useful to define the Joule coefficient pnj;, which expresses the change in
temperature with volume at constant energy,

or

Joule coefficient: wy = <8V>
U

Knowing the Joule coefficient, we can integrate it with respect to the volume to figure out the
change in temperature in the Joule expansion:

Vi
AT:/ wydv
Vi

A useful way to evaluate this coefficient is to use our partial derivative rules to relate:

_ (9T _ _ (9T (oUN _ _ 1 (oU
Hr=\av),~ \ov),\ov),~ v \av ),
where we used the definition of Cy = (OU/9T)y to invert 1/Cy = (9T/0U)y . Using the first

law dU = T'dS — PdV and dividing out by dV at constant temperature, we can evaluate the
partial derivative of U as:

dU =TdS — PdV = ou =T 95 - P
ov ) ov ),

This is useful because we can now use a Maxwell relation (0S/9V)p = (OP/IT)y to express

this as:
1 5N 1 oP
m=g (7 (av>T‘P> = (r (aT>V‘P>

Now we can use our equation of state for the gas to evaluate this formula, since we know P as
a function of T. For an ideal gas, we can simply use that P = RT/V, so that (OP/0T), =
R/V, and py = 0, so that as expected the temperature of the ideal gas does not change in
this expression. For real gases, however, the attractive effect of interactions between the gas
molecules means that when the molecules are more spread out in the final state the gas will
cool down, so that u; < 0. In the following exercise you will use this coefficient and the van
der Waals equation of state to derive the temperature change of a van der Waals gas.

In-Class Exercise: Van der Waal’s Expansion

n moles of a Van der Waal’s gas initially are contained in a vessel of volume V at tem-
perature T'. The gas is isolated from the world around it. The partition is then removed,
and the gas freely expands to a total volume of oV, where « is a constant. Find a formula
for the change in temperature of the Van der Waal’s gas during this process. Is this an
increase or a decrease?

Note: the molar form of the Van der Waals equation is

n2a
(P + V2> (V —nb) = nRT

for n the number of moles. Begin with the definition of the Joule coefficient p; = (%)U
and the formula we derived today for this coefficient.
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V.T

Solution: In a Joule expansion U is constant, so the strategy is integrate up to get the

change in temperature:
V2 ror &
AT:/ () dV:/ uydv
i ov U |4

- (3), - ),

For a van der Waals gas, we can evaluate

We derived

p_ nRT B LnZ 8j ~ nR
- V—nb V2 oT V_V—nb
so that the Joule coefficient evaluates to
B _i nRT - nRT _afn2 _ an?
M=oy lvem \Vem - V2 )T T o

Integrating up to get the change in temperature yields

Vo 2 aV 2 1 1 2 1
ar= [Cwav =g [T - (L) e (1-3)
i CV \7a \%4 CV aV Vv CVV 0%

Since « > 1 this is a negative quantity, and the temperature decreases.

AS in the Joule expansion In the free Joule expansion of an ideal gas we calculated the
entropy change of the gas using the isothermal expansion with the same endpoints. For the van
der Waals gas we can’t do this, since the temperature changes between the endpoints. Instead,
a useful way to compute the entropy is to write the entropy as a function of 7" and V/, so that

oS o8
_ (22 o0
ds < > dl +< V) dV

P
~Yry <a> av
T 14

where we used the relation (05/0V), = (0P/0T)y that we used previously in deriving the
form of the Joule coefficient, and also the relation between the heat capacity and derivatives of
the entropy with respect to the temperature. Using the equation of state for the van der Waals
gas, we can evaluate

P\ 9 ( NkgT _aN?\  Nkg
ar),  dr \V—bN V2 ) V—bN
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and therefore write dS as,

Cy Nkp

W=y oY

Integrating, we see that:

Ty Vi —bN
A 1 Nkgln | +2——
S = C’vn(TZ>+ kp (Vi—bN>

For an ideal gas, b = O and Ty = Tj, so this would just derive the expression we previously found
for ASgas = Nkp In ¥ V For the van der Waals gas the expression is a bit more complicated: it
depends on the temperature of the gas, Cy of the gas, as well as the constant b that indicates
how much volume is occupied by the molecules in the gas.

Joule-Kelvin expansion For practical purposes it is useful to replace the free-expansion
process of lifting the valve with a continuous steady-flow process, as suggested by Joule and
Thompson. The following Joule-Kelvin / Joule-Thompson throttling process can be used to
cool down gases to very low temperatures.

In a Joule-Kelvin expansion, a gas at a high pressure P; is forced by a steady flow through
a throttle valve (a porous plug) to a lower pressure P, in an adiabatic process. The pressure P;
is maintained on the high-pressure side of the constriction. To push the gas through the valve,
the high pressure gas behind it has to do work on it, equal to P;V;. As it passes through to
the low pressure region, the gas expands into a larger volume on the other side of the valve,
doing work on the low-pressure gas in front of it equal to P,V5. In the process of adiabatically
expanding the gas from P; to P, by a steady flow through a throttle valve, we have that

AU =AW = PV — BV,

since AQ = 0. In this case, the energy changes in an amount equal to the work being done, but
actually the enthalpy is conserved: using the definition H = U + PV, we have that:

AH =AU+ PRV, —PV; =0
so that this is an isenthalpic process.

To compute the temperature change in this process, we should define a Joule-Kelvin coef-
ficient that measures how the temperature changes with respect to the pressure at constant
enthalpy:

oT
le-Kelvi flicient: =\ =5
Joule-Kelvin coefficien UK <8P>

By integrating this coefficient with respect to the pressure, we can therefore compute the tem-
perature change of the gas. (See your book p. 316-317 for the manipulations — they are identical
to the sort of manipulations we underwent for the Joule coefficient 7). It turns out that this
process can actually actually result in either heating or cooling, since pjx can take either sign.
When the sign is negative so that the gas cools, this process is extremely useful for cooling gases
down to low enough temperatures to liquefy them.

Refrigeration cycle A standard refrigeration cycle consists of cycling a fluid with a low
boiling temperature through its gas/liquid phases.
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The gas condenses to a liquid at constant pressure, giving up heat while in thermal contact
with the reservoir at Tx.

An adiabatic throttling process then cools the refrigerant below T¢.

The liquid evaporates to a gas at constant pressure while in contact with the cold reservoir,
taking in Q¢ from the cold reservoir.

Finally, the gas is adiabatically compressed.

2 GAS

\ Adiabatic
Compression

Qc

_y.
Evaporation
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7 The 3rd Law, the Canonical Ensemble and the Equipartition
Theorem

Textbook readings: (a first reading is due before Lecture 14; most pertinent to Lecture 14):

e Ch. 18, all
e Ch. 19, all

e Ch. 4 sections 4.6-4.7

Learning Objectives:

e The third law, basic concepts
e (lassical systems and the equipartition theorem

e The canonical ensemble

7.1 The Third Law

The third law is concerned with the limiting behavior of systems as the temperature approaches
absolute zero. Absolute zero is the coldest possible temperature on the thermodynamic temper-
ature scale, where particles exhibit their minimum vibrational motion (as you learn in quantum
mechanics there is always some zero-point energy associated with the ground state of the sys-
tem; at absolute zero this is the only contribution to the particle’s motion). Absolute zero is
set as T' = 0 Kelvin by definition, or T' = —273.15° Celsius.

The third law can be stated in the following three ways:

e Nernst’s statement of the third law (1906): Near absolute zero, all reactions in a system
in internal equilibrium take place with no change in entropy.

e Planck’s statement of the third law (1911): the entropy of all systems in internal equilib-
rium is the same at absolute zero, and may be taken to zero.

e Simon’s statement of the third law: the contribution to the entropy of a system by each
aspect of the system in internal thermodynamic equilibrium tends to zero as the tem-
perature tends to zero. By aspect we mean some part of the system which essentially
independently contributes to the properties of the whole.

So, the third law concerns entropy, and the minimum possible value of the entropy of a
system. The essential point is that experiments can only determine differences in entropy. In
particular, recall that you’ve learned one useful way to measure the entropy is to measure the
heat capacity. For example, in a constant pressure process,

[0S [ Cp
Cp—T<8T>P = S—/TdT

This allows us to find changes of entropy between changes of temperature T; and T; written
as a definite integral
Ty CP

T
AS = S(T —SE:/ “Par=cpmm=L
(Ty) — S(T3) T pln
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where in the last equation we assumed C'p was independent of temperature (not always a good
approximation!)

The question is, is there a good definition of the absolute value of the entropy of a system,
not just changes in entropy? Since you have also learned the statistical definition of entropy

= kpIn {2, you should expect that the answer is yes: when there is no multiplicity of the
possible microstates of the system for a given macrostate (i.e., only one available microstate),
Q) =1 and so by the statistical defininition S = 0. The question is, what is the thermodynamic
definition of entropy consistent with this?

The third law provides a value of entropy at absolute zero, so allows us to determine an
absolute definition of entropy and not just differences of entropy. It essentially states that the
entropy of all systems at absolute zero temperature is a universal constant — this constant is the
same for all systems, and we can take it to be zero. This implies that the ground state of the
system at zero absolute temperature is non-degenerate (2 = 1), consistent with the statistical
definition S = 0. To put it simply,

S—0 as T—0
Some physical consequences of the third law are as follows:

e Heat capacities tend to zero as T — 0. We can see this from considering the total change
of entropy upon cooling from a temperature 1" down to absolute zero:

AS = 5(0) — S(T) = /TO %dT’

The integral will diverge as T — 0 (because In0 — —o0); it is only finite if C' — 0 as
T — 0. Of course, classically heat capacities do not vary with temperature, so this is
the statement that quantum considerations show that all heat capacities must eventually
vanish exponentially.

e Since derivatives of entropy are related by Maxwell relations to derivatives of other system
parameters, the third law tells us about the limiting behavior of other common thermo-
dynamic quantities. In particular, thermal expansion stops. The thermal expansivity Sp
can be expressed using a Maxwell relation as

10V 108

br =V oTlp = "Vaplr

The third law implies that in the limit of 7" — 0, the derivative of S with respect to some
thermodynamic variable z also tends to 0:

. oS
hmT_>0 ((%> =0
T

e The ideal gas law breaks down at T — 0. One easy way to see this is that for an ideal gas,
Cp — Cy = R per mole, but both Cp and Cy tend to 0 as T goes to zero, so that this
equation cannot be satisfied. In particular, this is because weak interactions between gas
molecules become more important as temperature is reduced.

So, Bp — 0 at absolute 0.
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e Unattainability of absolute zero. It follows from the third law (in particular, Simon’s
statement) that it is impossible to cool a system to absolute zero. Formally, it is impossible
to reduce the temperature of any system or part of a system to absolute zero in a finite
number of steps and within a finite time.

The lowest temperature that matter has been cooled to is 38 picoKelvin (38 x 10712 K),
achieved (and maintained for 2 seconds!) by a team in Germany with a Bose-Einstein
condensate (to be discussed later). You can read more about this result at this link.

This discussion motivates the need to consider the microscopic properties of the system —
statistical mechanics! We need to be able to take into account the microscopic properties of
individual atoms or molecules, analyzed statistically. This is where we’re heading with the rest
of the course.

7.2 The Boltzmann (Canonical) Distribution

General Definitions Statistical mechanics is a probabilistic approach to finding the equi-
librium macroscopic properties of systems with large numbers of degrees of freedom. So far
we’ve been mostly discussing phenomenological properties of macroscopic bodies, which are
well described by thermodynamics. Statistical mechanics examines an ensemble of microstates
corresponding to a given macrostate, and aims to provide the probabilities for realizing the
equilibrium ensemble. First, some definitions:

e The microcanonical ensemble: Often we are interested in a mechanically and adiabat-
ically isolated system, so that the internal energy U is constant. (Note that in this section
and beyond we might often use F for U since this is conventional in stat mech — apologies
for the change in notation!) The macrostate is specified by U and other thermodynamic
variables. The basic assumption is that all available microstates are equally likely to be
realized, and that macroscopic variables are completely determined by the multiplicity of
microstates.

e The canonical ensemble: We consider a system maintained in thermal equilibrium
with a large reservoir / heat bath. The system is maintained at a constant equilibrium
temperature 7' through contact with a reservoir, so that the macrostate is heavily depen-
dent on the ambient temperature T. Energy can be exchanged between the system and
reservoir, with the total energy of the reservoir plus system fixed (so that the total system
plus reservoir as a whole can be considered as being in the microcanonical ensemble). We
are interested in predicting the probability that the system at fixed temperature is in a
particular microstate.

We will have in mind the latter setup: two systems are in thermal contact. The total energy
of these two systems is fixed, but they can exchange energy and come to thermal equilibrium.
First let’s recall the statistical definitions of entropy and temperature. As in our discussion of
the Einstein solids (recall (1.4)), for a system with some number of microstates €2,

1 oS

g l P —
S k?B HQ, T oU

The latter equation can be rewritten in a useful way in terms of the microstates as
1 098 1 0lnQ

T-aU  kgT _ oU
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When two systems are brought into thermal contact, thermal equilibrium maximizes their en-
tropy, which we’ve motivated is precisely the same as requiring that the temperatures of the two
systems are equal: T7 = T5. This is not too hard to show: the total energy is Fiot = E1 + Es
(below we’ll follow the book’s convention and use the symbol E rather than U for energy) which
remains constant, and the combined entropy is S = S1 + So,

S = S1(E1) + S2(E2) = S1(£1) + S2(Eior — E1)

Maximizing the total entropy means that we can set the following to zero:

a8 05 052 05 n O0Fs\ 05 05 B 0Ss
aEl Etot - 3E1 Etot 8E1 Etot - 3E1 Etot 8E1 8E2 Etot o 8E1 Etot 8E2 Etot
since By = FEiot — FE1 implies g—gf = —1. Setting this to zero at equilibrium is equivalent to
setting
1 ) Jibri
— = — at equilibrium .
T T 4

We will actually consider the even simpler scenario of the canonical ensemble: let one of the
systems be huge (the reservoir, or heat bath, or environment) and one of them relatively smaller
(the “system”). The energy of the reservoir is much larger than the energy of the system, with
their total energy a constant:

Eiot = Es + ER, Es < ER.

The system exchanges energy with the reservoir, but in doing so the temperature of the heat
bath remains constant since it’s so large and has approximately infinite heat capacity. At a
given allowed energy of the heat bath, the number of microstates of the heat bath is ginormous,
but we assume that for each allowed energy of the system there is only a single microstate. The
macrostates are labeled by the possible energies of the system, Eg.

What is the probability of finding the system in a particular macrostate P(Eg) labeled by
its energy? It is proportional to the number of microstates Qr(FR) that are accessible to the
reservoir (which is large), multiplied by the number of microstates accessible to the system,
which we have assumed to be 1 (2g(Eg) = 1). Then this probability is proportional to

P(Es) o« Qr(ER)Qs(Es) = Qr(Fiot — E5)Qs(Eg) = Qr(Etot — Eg)

Note that since the system is small, we can still consider all the microstates of the reservoir to be
equally likely. The “x” is because of course we would have to normalize by dividing by the total
number of possible microstates of the system at a given Fiqt, though we will neglect this constant
denominator for the moment. Since we assume the energy of the system is much smaller than
the energy of the system plus reservoir, we can Taylor expand for small Fg < E\q, and express
the result in terms of the temperature. To do this it is easiest to expand In Qr(Ei — Fg) since
the temperature is related to the log of the number of microstates:

dIn Qgr(E)

lIl QR(Etot — ES) = 111 QR(Etot) - EST Foo + ...

1
— I Qp(Fit) — Bg—— + ... 1
nQr(Eiot) SkBT+ (7.1)

where T is the temperature of the reservoir — of course at equilibrium, both the system and
reservoir are at the same temperature T'. Exponentiating to get the probability, we find

Es

P(Es) x Qgr(Fiot)e *BT (7.2)
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This is known as the Boltzmann distribution, or canonical distribution, and the exponential
factor e Es/(k8T) ig known as the Boltzmann factor. It says that when we consider a system
in thermal contact with a heat bath, at fixed equilibrium temperature T, its energy is not a
constant but is governed by this exponentially decaying probability distribution: systems tend
to be found in lower energy states.

Of course, we should properly normalize by dividing by the total number of possible mi-
crostates, which is obtained by summing over all possible values of the system’s energy Fg for
a given Fiuy:

Q(Etot) == ZQR(E‘cot - En)

__En_
= QR(Etot) Z e *BT

where in the second line we used the result (7.1). Thus, in the properly normalized Boltzmann
distribution the constant prefactor Qr(Eiq) cancels out, and we have that the probability of
finding the system in a canonical ensemble with energy Fg is given as,

_Es
e kBT

P(Eg) = (7.3)

En

Zn 67 kT

This sum in the denominator is called the partition function — it is extremely important and we
will study it in some detail later.

Let’s consider the following examples that explore this Boltzmann distribution.

Example Problem: A 2-state system

Consider a 2-state system in thermal equilibrium at temperature 7" with a reservoir, whose
energy can take two possible values: with with energy £ = 0 and the other with energy
€ > 0. What are the probabilities of the system being in each state, and what is the average
energy of the system?

Solution:
_ﬁ 1
e kB
PO p— p—
O = T T
e BT

P(e) = T~/

Of course, P(0) + P(e) = 1 since we’ve properly normalized. What is the average energy
of the system?

(E) = EP(E;)=0-P(0) +¢€- P(e)

__€
ee *BT €

T 14 e/kET) — ee/kpT) 41

What does this look like? At high temperatures T — oo (or more properly, kT > ¢),
the e/(8T) factor tends to e® = 1, so the average energy tends to €/2. That is to say,
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when T is high both levels are equally occupied on average: P(0) — 1/2 and P(e) — 1/2.
However when T is small, kpT < €, e/*8T) 5 o0, so the average energy tends to a
constant/oo — 0, so that the system tends to be in its ground state.

(B) =

€ [ €2 T—oo
e/ksT) 11 | 0 T—=0

In-Class Exercise: The state of the sun

The temperature of the sun is 5800 K and is 71% Hydrogen by mass. Hydrogen has energy
levels that are given by the formula E = (—13.6/n2)eV for n =1,2,3,....

(a)

Calculate the ratio of the number of atoms in state 2 to the number of atoms in
the ground state n = 1. (Note that the value of Boltzmann’s constant is kg =
8.62 x 107%eV/K.)

Solution: Any given Hydrogen atom is an infinite-state system, with possible energy
levels F,. We can consider a given atom in thermal equilibrium with the rest of the
sun, at equilibrium temperature of T = 5800 K. The probability of the atom being
in the n’th state is proportional to the Boltzmann factor,

P(E,) x e~ En/(kpT)

If this is the probability of a given atom being in the n’th state, then the ratio of the
number of atoms in the n’th state to the number of atoms in the ground state is the
ratio,

Nn o deg(En)P(En) n2@_En/(kBT)

Ny deg(Ey)P(E)) e Ei/(kpT)

where we shouldn’t forget that since the n’th state has degeneracy 2n?, we should
multiply our Boltzmann factors by the degeneracies of the energy levels. Evaluating
kpT = (8.62 x 1079eV/K)(5800 K) = 0.50eV, and E; = —13.6eV, By = —3.4¢€V,
we have:

Ny 4P(E2) 467(73.4 eV)/(0.50eV)

N, = - -9
N1 P(E)) e (-136€V)/(0.50eV) 9.53 x 10

Note that we didn’t need the denominator factor at all in evaluating this expression.
We expect that we are more likely to be in the state of smaller energy, and this ratio
is indeed less than 1 as expected. In fact, this is a tiny number — the vast majority of
the atoms will be in the ground state! This result says that for every approximately
1 billion ground state atoms, there is one excited atom in the first excited state.

If we were to assume naively that all of the Hydrogen in the sun were either in the
ground state or first excited state (n = 2), how many atoms would be in the 1st
excited state? Note that the total mass of the sun is 2 x 10%° kg, and the molar mass
of Hydrogen is 1.008g/mol.

Solution: We need to calculate the number of Hydrogen atoms in 71% of 2 x 1030 kg
= 1.42 x 1030 kg of Hydrogen. The molar mass of Hydrogen is 1.008¢g/mol, and 1
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mole is equal to N4 = 6.022 x 10?3 atoms, so:

1.42 x 1030k 1000
. 1gm01 X 1k g _ 8.48 x 10%atoms
1.008 g/mol x T g

Since we found in part (a) the ratio of the number of atoms in the n = 2 state to the
number of atoms in the n = 1 state, if we naively assume that all of the atoms are
in one of these states then we can solve for Ny as:

Niot = N1 + Ny = Ny 4 Ni(5.53 x 107?) = 8.48 x 10'%atoms

8.48 x 1010
= Ny =(8.48 x 1010) “1+5 5;: 109 — 469 atoms

The vast majority of the atoms are in the ground state, with only a tiny fraction in
the first excited state. It would be an excellent approximation to approximate most
of the Hydrogen atoms in the sun as in their ground state.

(c) Re-answer (a) if the sun were only at room temperature, 7' = 300 K.

Solution: First let’s answer what we would expect. At smaller temperatures, we
know from the previous example that the system will be even more likely to be in its
ground state, so we expect an even smaller ratio of atoms in the first excited state
to ground state.

If the sun were room temperature, we would have kT = (8.62x1075eV/K)(300 K) =
0.026, so that

Ny 467(73.4 eV)/(0.026 eV)

_ _ —170
N, e (-136eV)/(0026¢V) 1.7 %10

which indeed is an unbelievably tiny number.

We should emphasize the result of this exercise: as the temperature of the reservoir (the sun)
goes up, the likelihood of finding the hydrogen atom in an excited state also goes up, whereas
if the temperature of the reservoir goes down, the likelihood of finding the atom in an excited
state also goes down.

7.3 Application: Classical Systems and the Equipartition Theorem

Before we move on to our study of the partition function, we will first have a discussion of the
equipartition theorem, which provides a simple classical theory of thermal systems valid at high
temperatures. The basic idea is that the internal energy of a classical system composed of a
large number of particles in thermal equilibrium will distribute itself evenly among each of the
quadratic degrees of freedom.

Suppose we have a system whose energy is given by
E(z) = az?

so that it depends quadratically on some variable x. This is very common; for example, a free
particle with just kinetic energy has energy E = %va, so z = v. Or, the potential energy
of a mass attached to a spring is ¥ = %/{Aﬁ where Az is the displacement of the mass from
equilibrium. In fact, If I consider a system in some general potential V' (x) that is a function of
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the position x of some system, and expand for small displacements Az around an equilibrium
state corresponding to a minimum of the potential at x = xg, then

o d2V (1)

d 1
Vix) LiAg) i
=0

Az) = A
V(Az) =V (xg) + Ax el

+ ...

where we drop small corrections to the first terms that are higher order in small Az. The first
term is just a constant. The linear term in Az vanishes, since at the minimum the derivative of
the potential vanishes, U’(z9) = 0. Then, the potential energy of any system near equilibrium
is described at leading order by a quadratic function in the displacement from equilibrium,

1
E = constant + §V’ "(z0)(Az)?... near equilibrium

This is known as the harmonic approrimation.

Now, suppose the system is allowed to interact with a heat bath, so that it can exchange
energy with the environment. The heat bath is large so you can take a lot of energy out of it
and it can remain at essentially the same temperature. What is the system’s average thermal
energy?

We've learned that the probability P(z) of the system having a particular energy E = oz’

is proportional to the Boltzmann factor e—o@?/(ksT) N ormalizing means dividing by the sum of

the probabilities for all possible states, which in this case is an integral since x is a continuous

variable. Let us assume that x could in principle take any value with equal probability; then,
efamz/(kBT)

P(z) = = emoa (ks T) dy

Recall that for a continuous variable that can vary over the range —oco to oo, the average is
computed by

where P(x) is the probability distribution. Then the average energy is given by

/ EP(x dx—/ oz’ P(z) dx
fo az?e—x?/(kBT) gy

[ emow?/(ksT) dy

These are both Gaussian integrals, given by

o0 oo
—ax? T 2 T
/ e”dw—\/7, / e dy = —
NS a oo 4a

so this evaluates to
' 1
(F) = ————— §kBT

This is a remarkable result: it says that the mean energy for any system with a quadratic energy
dependence is proportional to the temperature, and completely independent of the constant c.
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This theorem can be extended straightforwardly to the case when the energy is a sum of
n quadratic terms. In particular, if the total energy of my system is a sum of n independent
quadratic terms,

n

2

E= E 0T
i=1

Then we could perform exactly the same computation, except now the probability distribution
depends on n variables that can vary from —oo to oco: the probability of the system having total
energy F is

1 n 2
exp (_kBT Dic O‘lfvi)

P(E) = P(x1,22,...,2y) = — — :
oo oo exp (_k’JTT doica am:?) dxydxs ... dx,

The integral in the denominator is now a product of n Gaussian integrals. To compute the
average energy we would need to compute ffooo EP(x)dx as before, just now there is a sum of
n integrals to do. (I encourage you to go through the steps in Example 19.1 in Blundell and
Blundell; there is also a homework problem on HW 6 that revisits this system!) The result is
simple: the expression simplifies into a sum of n copies of the previous result,

1
Equipartition theorem: (E) = Z §kBT = ngT

This means that every separate quadratic energy dependence of my system contributes %kz BT
to the average energy of the system, regardless of the constant multiplying the z7! We refer
to each quadratic energy dependence as a degree of freedom, or mode of the system. This
result is summarized in the Fquipartition theorem: If the energy of a classical system is the sum
of n degrees of freedom and that system is in contact with a heat reservoir at temperature T,
the mean energy of the system is given by n x %kBT.

This is precisely the result that we motivated in our discussion of the internal energy of
an ideal gas. Recall that there we claimed that if we have N gas molecules in d dimensions,
then the system has dN degrees of freedom, with total internal energy U = gN kgT. Here
we have derived this result: we interpret the thermodynamic internal energy U of the ideal
gas as the average measured energy. The monoatomic gas in 3 dimensions, for example, has 3
quadratic components to the kinetic energy of each gas molecule, times N molecules, so that
by the equipartition theorem a monoatomic ideal gas in three dimensions has internal energy
U =3N x tkpgT = 3NkgT.

The molecules in a diatomic ideal gas, by contrast, can additionally have rotational kinetic
energy and vibrational kinetic energy. The rotational kinetic energy adds 2 degrees of freedom
associated to each molecule of the gas, while the vibrational motion adds another 2 degrees of
freedom, so that the average energy of a diatomic ideal gas that accounts for the translational,
rotational, and vibrational motion of the molecules is U = (3 + 2+ 2)N x $kpT = INkpT.
This explains the different internal energies and heat capacities of monoatomic versus diatomic
ideal gases: for instance, since

_[(oQ\ _ [oU _ 1
Cy = <8T>V = (5T)V = Oy = (# of degrees of freedom) x 2k3.
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Another example is a mass on a spring in one dimension; the mass has kinetic energy o v?

and potential energy oc 22, so there are two degrees of freedom that contribute to its average
energy: (F) =2 X %kBT = kpT. This means that we can assign an average energy of kg1 to
a harmonic oscillator in one dimension.

It is important to note that the equipartition theorem is generally valid only at high temper-
atures, when the thermal energy is much larger than the energy gap between quantized energy
levels so that we can ignore quantum effects and approximate the variables x; as continuous.
However, if you are modeling your system by expanding around some minimum of a potential,
you also have to be careful not to take T' too high so as the harmonic approximation is no longer
valid, and we need to include higher order terms in the potential energy that are cubic, quartic,
etc. As your book points out, fortunately there is plenty of room between these two extremes.

8 Boltzmann and the Partition Function

Textbook readings: (a first reading is due before Lecture 15; most pertinent to Lecture 15-17)

e Ch. 4 sections 4.6-7

e Ch. 20, all

Learning Objectives:

e The partition function: calculation of Z for simple quantum systems

e Obtaining functions of state from Z

8.1 Partition Function Basics and Computing U

The ratio of two Boltzmann factors is just a ratio of two probabilities,

Py e E2/(kpT)

P o Bi/(ksT)

We’ve learned that to compute absolute probability, we need to properly normalize by dividing
out by the sum of all possible probabilities, the partition function. If there are N terms in
the sum, then this sum is given by

N N
Z — Z e_En/(kBT) — Z e_ﬂEn B = ]-/(k;BT)
n=1 n=1

We will often use the symbol 8 to denote the inverse temperature (times Boltzmann’s constant).
The origin of the symbol Z for the partition function is its German name, Zustandsumme, or
“sum over states”.

What is this sum? At low temperatures compared to the energies of the states, so that
kT < E,, Z ~ 1 since e~ — 0. Why? This is the limit in which only the ground state term
contributes to Z; the resulting probability will be ~ 1 for the ground state and ~ 0 for the
other excited states. But for high temperatures, Z can get quite large as excited states become
more and more possible.
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Despite being introduced as a seemingly innocuous normalization factor, the partition func-
tion contains all the information about the energies of the states of the system. As we will see
in this section, all thermodynamic quantities can be obtained from it.

Some basic properties of the partition function are the following:

e The zero energy is arbitrary: only energy differences are important. Imagine we shifted
all the energy states by a constant ¢, E, — E, + c¢. The partition function would change
by an overall multiplicative factor,

N
A Z e PlEnte) — o=Bey

n=1

However, any probability that I compute will have the same multiplicative factor in the
numerator,

¢—BEn ¢—Bco—BEn
So, the probabilities of macrostates that I compute for a system described by partition
function Z don’t care about the zero of energy. Of course, if I want to compute the average
energy, the whole average will shift by this constant:

(E) =) E.P(E,) — Y (En+c)P(Ey)=(E)+c

e For independent systems, Z’s multiply. This is easy to prove. Suppose that we have two
systems which don’t interact with one another, so that the energy of the combined system
is the sum of the individual energies, Eyo, = ED + E@ = 3 BV 45 EX. The
partition function for the combined system takes the form,

_ (1) (2) _ap() _ap(2) _ap® _3p®2
Z — Ze ﬁ(En +Em ) — Z e /BETL e BEm — Ze BETL Ze BEm — Z1Z2
n,m n,m

n m

Of course if the systems are not independent so that there is some interaction term that
depends on both systems, this property will not hold.

Let’s examine what information is contained in the partition function. We will start by
thinking about the system energy, which we should recall is not fixed in the canonical ensemble.
We'’ve already gone through some examples computing the average energy of a system using
the formula,

¢—BEn
(B) =Y B Pm) = Y P

n

or the integral version of this formula if the distribution is continuous. (We are interchangeably
using the notation P(E,) and P(n) to label the macrostate whose energy is given by E, —
hopefully the meaning of this notation is clear.) However, evaluating these sums can get a bit
tedious. Observe that there is a way to nicely express the average energy solely in terms of Z,
without reference to the probabilites: by differentiating with respect to 8, we pull down a factor
of the energy E, in each term of the sum, so that
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In other words, this derivative just computes the unnormalized average energy (before we’ve
divided out by the normalization factor Z.) The average energy can therefore be written as

10Z oz
708~ 0B

(E) =

where in the second equality we used the fact that dln f(z)/dz = (1/x)df /dz to write the
derivative in terms of In Z rather than just Z. (Feel free to use whichever version of this
formula you like, it’s a matter of preference! Also if you prefer to express everything in terms
of T rather than £, don’t forget to chain rule the derivatives: % = %% = —k:BTzﬁ.)

Now, statistically speaking, the variable F refers to the total internal energy of the system
upon measurement, where repeated measurements will roughly follow the probability distribu-
tion P(n) whose average is (E). We identify (E) with the thermodynamic quantity U — the
function of state which describes the internal energy of the thermodynamic system consisting
of a large number of degrees of freedom. So this equation tells us that by simply differentiating
the partition function, we can compute the system’s internal energy U — a function of state!

olnZ 1 0z

o8 ZopB
This is a very powerful formula! Let’s check (8.1) by revisiting the 2-state system example
from earlier. We consider again the example of a 2 state system in thermal equilibrium at

temperature T with a reservoir. In the previous example problem, we solved this for the case
that the two possible energy levels are E = 0 and F = ¢ > 0, where we explicitly computed

U= (E)=— (8.1)

€

(B) = e 1 1

Now let’s do the same exercise, but only using our partition function formula (8.1). Z for this
system is given by Z = 1+ e €. We can compute

(B) = 190z 10 <1+e*56)

- ZoB Zop
_ —eePe _ ce—Pe _ €
N Z  l4eBe efet]

This is the same result we found before. No need to compute probabilities, just take a derivative
of the partition function!

As an explicit example of a 2-state system, let’s revisit the 2-state paramagnet that we
discussed at the very beginning of this class.

Example Problem: The 2-state Paramagnet

This system consists of N particles of spin-1/2 in a uniform magnetic field of magnitude B.
The particles can be thought of as N magnetic dipoles of magnet moment y. Their spins
must be either up or down (thank you quantum mechanics), and when the spin is down the
v’th dipole contributes positively to the energy as F| = +uB, while when the spin is up
it contributes negatively as F/y = —uB. We put the whole system in thermal equilibrium
with a heat bath of temperature T'. This is therefore a set of IV 2-state systems, each with
possible energies Fy or |, all in thermal equilibrium at temperature T'. (Caution: in this
problem N denotes the number of dipoles, not the number of states of the system!! This
is a collection of N 2-state systems.)

First consider only one of the dipoles at a time, say the ¢’th dipole. Find (1) the
partition function for this system, (2) the probability of measuring the i’th particle in the
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spin up state, and (3) the average energy of the dipole.

Then, consider the whole collection of N dipoles. Find (1) the partition function for this
system, (2) the probability of measuring Ny dipoles in the spin up state and N dipoles in
the spin down state, with Ny+N; = N, and (3) find the average energy of the paramagnet.

Solution: Let’s first answer these questions considering only one of these dipoles at a
time (say, the ¢’th dipole, where ¢ runs from 1 to N). The partition function of that single
dipole is

Zi = Z e PEn — ¢=PEr 4 ¢=BEL — ouBB 4 o—1BB
n:T»L

A nice way to write this expression is in terms of hyperbolic cosine cosh,
Z; = etPP 4 e7HBB — 9 cosh (uBp)

The probability of measuring that dipole in the 1 state is given by the Boltzmann distri-
bution,

b e—BE eBuB
M= Z;  2cosh (uBp)
and similarly,
e—BE, ¢—BuB
P() =

Z;  2cosh (uBp)

Finally, we can compute the average energy of the dipole in one of two ways: we can either
explicitly compute

8 (_eﬁuB + B—BMB)

(Ei) = BEyP(1) + E,P(}) = uB Scoh(uBE) — B tanh (uBp)
Or, we can use our handy formula (8.1):
. 1o _ 2uBsinh(uBB)
(Bo) = =7 o5° cosh (nBf) = 2cosh(uBp) pB tanh(pB3)

As expected, we got the same answer.

So far we have answered these questions for a single dipole; what about the system of
N dipoles? In this case, since the dipoles don’t interact with each other, the total energy
is the sum of the energies of all the individual dipoles,

N
E = ZE
i=1

where E; can be either Ey or E| depending on whether that dipole is spin up or spin down.
Then, the partition function is simply the product of all the individual partition functions;
as these are all identical, the partition function of a single dipole to the N’th power:

Z=207... Zy=2ZN =2V [cosh(uBB)]"
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Now we can ask about the probability of measuring N} total dipoles in the spin up
state, with Ny + Ny = N. Since we know the probabilities for each single dipole, the
probability of measuring N} dipoles in the up state and N| in the down state is given
by multiplying all the individual probabilities for N4 dipoles and N| dipoles, times the
combinatorial factor to account for the fact that there are N choose Ny possible ways
of arranging the Ny up states amongst the N dipoles (remember, this is the binomial
coefficient factor Q(N4+) = N!/(N4+!N,!) that we computed in an early lecture!):

P(N:) = ( M ) (PN (P

N! ePnB Ny e PrB N
- N;IN}! <2 cosh (uBB)) (2 cosh (,uBB))
N! eBuBNy o—BuBN,
 NyIN 2NN [eosh (B B) Y
N!  eBuBNy—BuBN,
~ NN Z

where we used N| = N — N; to simplify the denominator.

The average energy of the whole system is computed as,

_ 1oz _ 1 9N cos N
(B) = ZoB 9N [Cosh(uBB)]N 352 [cosh(nBp)]
1 N—1 .
=—— = . NuB]cosh(uB sinh(uB
B [cosh(nBp)] (nBB)

= —NuBtanh(uBf) = N(E;)

The average energy of the whole system is the sum of the average energies of each of the
individual dipoles. This is completely as expected, because the dipoles don’t interact with
each other! The average energy is simply given by

After we discuss how to compute more thermodynamic properties from Z, we will return

to the 2-state paramagnet and better understand its physics. Another very nice example is the
simple harmonic oscillator — you will compute U for the simple harmonic oscillator system in

your homework.

8.2 Functions of State from 7

Heat capacity Besides U, other familiar functions of state can be computed from Z. One
example is the heat capacity at constant volume. Recall that Cy, is given by the derivative of
U with respect to temperature at constant volume. Using (8.1), we can therefore find Cy just

by differentiation the partition function:

_(oU\ B (OU\ Bz
=), =7 (5), 195 2
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(Your book changes variables from 3 to T' to rewrite this formula entirely in terms of derivatives
with respect to T": T recommend checking for yourself that you can reproduce equation (20.19)
in your book directly from (8.2) above using % =—k BTZdiT!) If you prefer to write this without
the log, we can do out the chain rule:

B[O 1\0z 18Z
ov=7((37) 5 * 79%)

B 1 [oz\* 10°Z
o7 ‘m(ag)*zw

Actually, this expression is proportional to the variance in the energy (AFE)? (the mean
squared deviation, or the standard deviation squared): it is not too hard to show that

g

ey =0 (e ) =8

§ (A)?

Remember, the variance (AE)? measures the size of the probabilistic fluctuations in the energy
of the system. This is an interesting result: it says that statistically speaking, the heat capacity
Cy of a system is a measure of the systems thermal energy fluctuations. How important are
these fluctuations? For systems with many particles (say, N degrees of freedom), we’ve learned
from the equipartition theorem that typically (E) ~ NkgT, so that Cy ~ Nkp (here just
tracking the factors of N and kg7, not so much the order 1 constants like 3 or 1/2). Then,

AE_\/CVT/ﬂN\/N_ 1
(E) (B N N

This says the relative size of the fluctuations to the typical energy in the system decreases with
the number of particles, going to zero in the thermodynamic limit that N — oco. So, in the
thermodynamic limit the energy becomes peaked closer and closer to the mean value (F) and
can be treated essentially as fixed.

Entropy S We've previously statistically defined the entropy of a configuration with some
energy F as due to the number of different states in which the system can exist, S = kpIn{2.
This is an expression useful for the microcanonical ensemble, where the energy E of the system
is taken to be fixed, and there is no mention of a thermal equilibrium temperature 7.

It turns out that the entropy can also be expressed more generally in terms of the probabil-
ities P; of realizing a particular macrostate labeled by 4,

S = —kBZPilnPi

(We won’t actually prove this expression; if you're interested this is discussed in some detail at
the end of Chapter 14 of the textbook.) In the microcanonical ensemble, where (2 is the total
number of macrostates possible for the system and where each has macrostate equal probability
P = é of being realized, this readily gives the same definition we were using before:

Q
1.1
S:—kBEPilnPZ-:—szﬁlnﬁ:kBan v
7 =1
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In the canonical ensemble, the macrostates are labeled by their energies E,,, and the probability
P, is given by the Boltzmann distribution:

efﬁEn 675En

= kp (BU +1n 2)

where we used that Y e #Pn = Z and U = (E) = ., E,e PP /Z. Since U can itself be
written as a derivative of Z, this expresses the entropy of the system entirely in terms of the
partition function Z.

Helmholtz function F' Recall that the Helmholtz function is defined as ' = U — T'S.
Therefore, combining the equations for S and U and using 7' = 1/(Skp) allows us to write

F:U—;wU+mm:—;mz

or in other words,
Z =ePF

No more sum! That is to say, the Helmholtz function F' contains information about the sum
over all the energy states.

From the expression for F' we can find an expression for the pressure P; we can use

p_ oF 1 (0lnZ
(), =5 ),

. And so on. At this point we can use the many relations we’ve learned between the vari-
ous thermodynamic variables to generate the relevant thermodynamic properties from Z. For
instance, since H = U + PV and G = F' + PV we can use the above definitions to write the
other thermodynamic potentials in terms of Z, and then use all the partial derivative expres-
sions we’ve learned involving the thermodynamic potentials to find anything else we like. It all
follows from Z! Etcetera.

With all these expressions in hand, let’s revisit several different systems we have discussed
to this point to discuss their physics.

e The 2-state system: Consider a 2-state system whose energies are given by +A. (For
instance, if the 2-state system is a dipole in a magnetic field we would have A = uB; or
we could shift everything by a constant A so that the energies are 0 and 2A, in which
case we would identify € = 2A in the previous example problem we did.) In any case, we
can write down the partition function as

Z = 2cosh(BA)

Let’s plot U and S for this system as a function of 8, as computed from Z using the

formulas U = —%g—g and S =kp (BU +1n Z2).

At low temperatures (large (), the system is in the ground state and so the internal energy
is U = —A. Since the ground state has degeneracy 1, we expect the entropy should match
S=kplnQ =kplnl =0, and indeed the entropy in the low temperature limit is 0. This
also makes sense with the third law of thermodynamics: S — 0 as T" — 0.
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At high temperatures (small 3), both levels are occupied with equal probability 1/2, and
so U tends to the average of the two levels, which in this case is 0. Since there are two
possible states, we expect the entropy to go to S = kpIn2, which indeed is born out in
the plot of S. Generally speaking, higher temperatures correspond to more possible states
the system could be in so correspond to increased entropy, whereas cooling gives rise to a
reduction in the entropy.

It is also interesting to plot the heat capacity Cy as a function of 3, using Cy = (0U /90Ty .
The heat capacity is very small both at low temperatures, and at high temperatures.
Basically, this is because in either case changes in temperature have only a very small
effect on the internal energy; in the low temperature limit the system is stuck in the
ground state and small temperature changes don’t alter that conclusion (and of course,
we expect from the third law that Cyy — 0 as T'— 0), whereas in the high temperature
limit the system has equal probability of being in either of the states and small temperature
changes don’t alter that conclusion. However in the middle there is an interesting peak, at
roughly 8 ~ 1/A, or when the temperature approaches the difference between the energy
levels. At this temperature it is possible to thermally excite transitions between the two
states of the system. This is known as the Schottky anomaly.

0 B =1/(kgT)
uip)
-A
In 24
S(B)/ kg
0 B=1/(kgT)
Cv(B)/ kg
01 B = 1/(kgT)
1/A

Figure 7: Plots of energy, entropy, and heat capacity as a function of 3 for the two-state system
with energies £ = £A.

e The paramagnet: We've also considered the paramagnet consisting of N spin-1/2 par-
ticles in a constant magnetic field, each with energy +uB depending on whether their
spin is up or down. Recall that the partition function is equal to the product of the parti-
tion function of each individual dipole, which is just the 2-state system partition function
Z; = 2 cosh BA taken to the N’th power for A = uB:

Z = [2cosh(BuB)]™

The behaviors for the set of N 2-state systems are similar to those of the 2-state system:
as T' — 0 the spins want to be in their lowest energy state (pointed up), and so are aligned
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up along the magnetic field, while at high temperatures approximately half of the spins
will be pointed up and half will be pointed down. There are many possible microstates
possible at high temperatures, so the entropy gets huge as the temperature gets large.

A useful physical quantity to compute is the magnetization M, defined as the magnetic
moment per unit volume. When all the individual magnetic moments are pointed up, the
magnetization will tend to be like M ~ Npu, while if the spins are not aligned along a
particular direction and instead randomly distributed between up and down, the magne-
tization will tend to 0. The magnetization is computed from the Helmholtz function F

as
1 F
M= L (9F
V\90B ),
which means we can compute it from the partition function using F' = —(1/5)In Z, with
result

N
M= 7“ tanh(BuzB)

At low temperatures, § — oo and tanh(oco) — 1, while at high temperatures 5 — 0 and
tanh(0) — 0, so that

Ne 150
M 1%
_>{ 0 T— o

So indeed: at low temperatures the material is magnetized, with net magnetic moment
per unit volume equal Ny /V, while at high temperatures the material is not magnetized.
This is the defining behavior of a paramagnet.

In-Class Exercise: Partition function fun with a simple harmonic oscillator

A simple harmonic oscillator is known to have energy levels given by

1
En:<n+2>hw, n=0,1,2,3,...

(a) Write down the formula for Z, then simplify it using the following infinite sum:

> 1

g " = forxz<1.
l1—z

n=0

Solution: Z is given by the sum over all the Boltzmann factors for the energy levels,
oo
7 = Z e~ B(n+3)hw
n=0
We can evaluate the sum by repackaging things in a nice way:

o0
n
7 — o—Bhw/2 Z <e—ﬁm)
n=0

80



so that we can identify z = e #" and use the infinite sum formula,

M

n=0
efﬁhw/2

1— e Phw

Calculate U and Cy from Z.

Solution: We compute the average energy as

po 102 _ 1-eP —(hw J2)e=Bw/2 o= Bhe/2 . (pyebhe)
T ZOB e P2 1— e P (1 _ ¢ Ph)2
hw 2 hw Bhw
2(+eﬁﬁw—1> 5 O <2)

(You showed how to simplify this expression in Homework 6! But writing either in
terms of exponentials or hyperbolic trig functions is fine.) We can compute Cy by
differentiating with respect to temperature:

v =737 <ehw/(kBT) _ 1> T (/D) —1)2 T kpT?

. k3ﬁ2(hw)266hw . kBﬂz(hw)2
(P —1)2 T 4[sinh(Bhw/2))?

What do you expect U and Cy to reduce to at very low temperatures? What about
at high temperatures?

Solution: We expect that at low temperatures, the average energy is just the ground
state energy, and Cy — 0 according to the third law. Indeed, at low temperatures
B — oo so the second term in U goes to zero, and if you're careful about taking
limits you can also show that Cy — 0 as § — oc:
T—0: U~ % , Cy =0 v

At high temperatures we expect to recover U = kT and Cy = kp, since this is the
limit in which the equipartition theorem is valid. Indeed, in this limit 8 — 0, and
we can expand coth(fz) = 1/(Bx)+... in U, where the ... denote terms subleading
for small 5. This reproduces U =~ kgT. One can similarly do series expansions for
Cy using sinh(fx) = fx + ... for small 5 to show that Cy &~ kp in this limit:

T — o0: U%]{:BT, CV%kiB v

The results of this exercise (as well as a plot of the entropy) are shown in the figure below. At

low temperatures (large (), only the lowest level is occupied, so the internal energy is U = %ﬁw,
and as expected S — 0 and Cy — 0. At high temperatures (small 3), more and more energy
levels can be occupied, so that U rises without limit (linearly with temperature as U ~ kT,
or equivalently as ~ 1/f) since there are in principle an infinite number of energy levels. The
entropy also rises accordingly. Meanwhile, the heat capacity rises to a plateau of Cy = kp, in
accordance with the result of the equipartition theorem.
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Figure 8: Plots of energy, entropy, and heat capacity as a function of § for the quantum simple
harmonic oscillator.

9 Statistical Mechanics of an Ideal Gas

Textbook readings: (a first reading is due before Lecture 18; most pertinent to Lecture 18)

e Ch. 21, all

Learning Objectives:

e Statistical mechanics of the ideal gas: density of states; what is Z for 1 particle? distin-
guishability and Gibbs paradox

9.1 Single Particle Partition Function of an Ideal Gas

As we’ve seen, the partition function is an extremely useful quantity. We can compute it once
we know the energy levels of my system, and at this point we’ve computed it for a number of
quantum systems of interest. But we haven’t computed it for our most basic system we’ve been
discussing in this course: the ideal gas. What is the partition function of an ideal gas?

In our classical model of the ideal gas, the gas’ energy is due to the kinetic energy of each
of the molecules. We expect the single molecule partition function to look something like this:

2 2 2
oo 0o © _g Py 4 Py Py 2 3/2
7 / / / ‘ e dp,dp,dp. = (?) = (27mkpT)*/?
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where we performed the 3 Gaussian integrals, and the N-particle version to go like Z ~ Z{V .
However, there is something not quite right with this formula as I wrote it: it has the wrong
units! The partition function should be dimensionless, which is obvious in the discrete version
as a sum over discrete energy levels:

7 = E e PEr s dimensionless
n

The problem is the dimensionful measure d3p in passing from the discrete sum to a continuous,
classical integral. We are missing a dimensionful constant, which turns out to be equal to the
volume of space divided by Planck’s constant h cubed:

3/2
7y = % (T) (9.1)

Why does Planck’s constant appear, when we are trying to talk about a classical system??
This is a hint that we really need quantum mechanics to derive the correct partition function
of the ideal gas. (This is a rare case where understanding the quantum version is easier than
understanding the classical one!) We'll see that with a quantum (really, semi-classical) treatment
of the ideal gas molecules as particles trapped in a box of volume V', we will be able to reproduce
this formula on the nose. To do this problem correctly, we’ll have to compute a partition function
that looks like

ZN/eﬂE(p)g(p) dp

where the measure g(p) dp is what we call the density of states: it is the function that tells you
how many states are possible between momenta p and p + dp, or in other words, how many
energy states lie in a certain momentum interval.

The steps go as follows:

0. We consider a cubical box of volume V = L? filled with gas molecules. We label each

molecule by its momentum, p, with its energy given by the kinetic energy E = %. Let’s
focus our discussion first on the possible states for one of these gas molecules.

1. Recall from Modern Physics: particles are waves! We can model each gas molecule as
a free particle trapped in a box. Quantum mechanically, the free particle with mass m
trapped in a 1d box with sides at x = 0 and z = L is described by the wavefunction

$(0) =\ 2 sinhe)

where k, is the wavenumber inversely related to the wavelength as A = 27 /k,, related to
the particle’s momentum as

2 h2k2
pe=hk, ¢ E=2r 1%
2m 2m

The particle in a 3d box has a total wavefunction which is just 3 copies of the 1d wave-
function (1 for each direction):

3
[2 B, 2 (k24 k2 4 k2
P(z) = ( L) sin(kyx) sin(kyy) sin(k. z) , p=hk, E = p—m = ( me )

[\~

We can label the momenta / energy of the particles equivalently by their possible E—Values,
or wave vectors. Note that short wavelength (large k) waves have more energy than long
wavelength (small k) waves.
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2. Waves trapped in a box have a discrete set of possible states forced by the boundary
conditions. In particular, since the wavefunction for the particle has to vanish at the
boundaries of the box (z,y,2) = 0 and L), a half-integer number of wavelengths A\ = 27/k
have to fit inside the box in each direction:

and similarly for the y and z directions. This imposes that the energy/momentum is
quantized:
_ NgT _onyT N, m2h2

kx = I s k‘y = I k’z = % = Enznynz = W (7’1132c + n; + 'I’Lz)

The energies are labeled by the three integers n;,n,,n. which each independently run
from 1 up to infinity.

3. Each allowed state is represented by the three integers n;,n,,n., which determine the
wave vector k. We can represent an allowed state in three-dimensional l;:—space, where
these points are equally spaced, separated by distance 7/L in each direction. A single
point (corresponding to an allowed state) occupies a volume in k-space of

vol. in k-space occupied per allowed state: TeIr
L L L

4. The “density of states” function tells you how many more possible states are accessible
when your momentum increases by a small amount. Allowed states with a wave vector
whose (positive) magnitude lies between k and k + dk lie on one octant of a spherical shell
of radius £ and thickness dk. The volume of this shell is thus

vol. in k-space of one octant of shell (k, k + dk) = é x 4rk? dk

The density of states in k-space is the number of allowed states with a wave vector
whose magnitude lies between k and k + dk:

vol. in k-space of one octant of shell (k, k + dk)
vol. in k-space occupied per allowed state

density of states = g(k) dk =

which when substituting for our previous formulas, yields

V
k)dk = — k> dk
This result says that there are more states at larger wavevectors / shorter wavelengths /
higher energies, as you would expect when counting waves in a box.

Having derived our density of states, we can finally write the partition function for the single
gas molecule, which we will call Z;. It’s given by adding up the Boltzmann factors e #£(*) with
measure g(k) dk, over all values of the magnitude & from 0 to infinity:

oo B V oo 7[37;21@2
&:/eﬁmMM%:%z e~ om k2 dk (9.2)
0 0

Note that the Boltzmann factors e BE®) = ¢=8h*k*/(2m) imply as usual that lower energy states
are more likely — so we are more likely to find particles in smaller energy = smaller k = larger
wavelength states.
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The partition function (9.2) is simply a Gaussian integral, whose result is:

3/2
2= V(™
3\ 278

Recalling that i = h/2m, this exactly reproduces (9.1), deriving from first principles the con-
stants that we stuck ad-hoc into that formula to make the dimensions work out.

Thermal wavelength We define the thermal wavelength )\, also called the thermal de
Broglie wavelength, as the following combination of constants:

h
V2rmkgT
in terms of which we can also write the single particle partition function as

_V
A

Ath =

Z (9.3)
You can think of A\, as something like the average de Broglie wavelength of a particle at tem-
perature T'. Since the average energy per particle is %kBT (due to the equipartition theorem),
and this is due to the kinetic energy of the particle, we have

p* 1
~ = kT = p*=mkpT
2m 2

The quantum mechanical de Broglie wavelength is related to the momentum as p = E\ZIZ, which
allows us to relate

Nom 2mh B 1)\
B ks T  Vor ™

So up to a factor of v/2m, the thermal de Broglie wavelength is the average de Broglie wavelength
of each particle.

9.2 Distinguishable vs. Indistinguishable

In order to understand the partition function for our gas of IV particles, we need to understand
the following somewhat subtle idea of distinguishability of the particles.

Suppose I have two distinguishable non-interacting two-state systems (dipoles), each of which
can either be in the up state or down state. The particles are distinguished by their physical
location: left versus right. The possible states of my system are:

™, N H

Even though the middle two possibilities have the same total energy, Ey + E| = E| + Ey, we
distinguish them as two separate states, since we distinguish the left and right dipoles from one
another. The total partition function of this two-particle system is equal to the product of the
two single particle partition functions, since I sum over all the possible states: Zo = Z12.

Zy = e BUELTEY) | o=BE+Er) 4 o—=B(Er+E)) 4 o—B(Er+Er)

2
= <e_ﬁE¢ + e_ﬂET>
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Suppose, however, that my two particles were indistinguishable — I couldn’t tell which one was
on the left and which one was on the right. Then, the middle two states are not distinguishable
from one another; they count as just one possible state of the system with one particle up and
one particle down. The partition function would be

Zo = e BEGE)) | o=BELHEY) | o=B(Er+Er) £ 72

Z? overcounts states. In general if we have N particles all in different states, then this over-
counting factor is V! for the terms with the N all in different states. In this example, there is
a factor of 2! difference between the middle terms in the two expressions.

Particles in a gas would be considered as indistinguishable — we don’t actually have a means
of labeling which is which. So the partition function for the N particle system should not be
equal to (Z1)"V — that would overcount states. We will instead approximate that the N-particle
partition function for indistinguishable particles is

(Z1)N
N! 7

This is an approximation because it assumes it is possible to ignore those states in which two
or more particles occupy the same energy level, in which case the N! factor is not quite right.
When is this approximation possible? It is possible when there is a huge number of available
states for the system to be in, much larger than the number of particles. For the ideal gas, if we
require that the number of thermally accessible energy levels is much larger than the number
of molecules in the gas, then it’s reasonable to assume that all the gas molecules will be in
different states, and so the N! factor is correct. When this approximation holds, we have that
the ideal gas partition function is

L2 1 (VAN m
N! — NI\ R3 or 3

As a historical aside, the necessity of adding the extra factor of N! was noticed before the
advent of quantum mechanics by Gibbs, who was studying the entropy of mixing gases. Includ-
ing this factor in the partition function ensures that the entropy of mixing indistinguishable
gases does not increase, resolving what was known as Gibb’s paradox.

ZN = indistinguishable

9.3 Functions of State

Let’s check that we get the expected functions of state for the ideal gas from our partition
function. Firstly, we compute

N N
F=—kpTlnzZ=—kgT (Nan+321nmlnN!3Nlnh 32ln27rﬁ)

so that

OF NkgT

P=—|—] =- = PV = NkgT
<8V>T 1% b

The ideal gas equation of state pops out as expected! Furthermore, we can compute the average

energy,

102 snje (3N oosvje1 3
__toz _ = °NkgT
U=-7 0B s 5 )P 5Nk

precisely in agreement with our previous results (and, the equipartition theorem.)
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In-Class Exercise: 2D Density of states

Calculate the density of states g(k) for an ideal gas confined to two dimensions.

Note: while this may sound like a theoretical exercise, a number of micro and electronic
devices operate using electrons that are confined to an extremely marrow region that is
sandwiched between two different semiconductor layers. These electrons are said to form
a 2DEG (2-D electron gas). Furthermore, note that this is a homework problem!

Follow the following steps:

e First find the possible values of the wavevector k based on the “particle in a box”
problem.

Solution: For a particle in a 2d box with sides of length L, we have that energies are
labeled by two integers n, and n,, with

NgT Ny T

k$: L, ky— La

and total magnitude

2

9 NgT\ 2 Ny 2_7r 9 9
#=(57) + () = e+

e Then, consider how many such points exist per area in 2D “k-space”.

Solution: In 2d k-space, each allowed state is represented by a point (ns,n,), each
separated by a distance of /L in each direction. A single point occupies a volume
of (w/L)2.

e Then, consider how many values are confined to a circular region of a given magnitude
of k.

Solution: Allowed states with a wave vector whose positive magnitude lies between
k and k + dk lie on one quadrant of a circle of radius k, whose volume is 1/4 times
the circumference of the circle: i x 2mk dk.

e Finally, consider how the total number of possible k-values in this region will increase
as k is increased.
Solution: The density of states is the number of allowed states with a wave vector
whose magnitude lies between k& and k + dk:

vol. in k-space of one quadrant of shell (k, k + dk)

density of states = g(k) dk =
Y 9(k) vol. in k-space occupied per allowed state

Iokdk L2
= 2T 2k
% 2

We can check that the result of the exercise makes sense by applying it to a two-dimensional
ideal gas. The partition function for a single gas molecule in 2 dimensions is given by

> L? [ e mL?
T = —BERE) o (kY dk = —— —BRE2/(2m) . e — T
! /0 c 9(k) 27 Jo c 27 Bh?
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In particular, this can be written as the area A divided by )\fh,

g A b, 2B
1_/\fh7 th—\/27rkaT_ m

Comparing to (9.3), the general formula in d-dimensions will be expressed as V;/ )‘%h' Then,

the average internal energy of a single gas molecule in d-dimensions would be computed as,
1 021 _

U= —Zrop — d X %k:BT , in agreement with the equipartition theorem.

10 Chemical Potential and the Grand Partition Function

Textbook readings: (a first reading is due before Lecture 21; most pertinent to Lecture 21)

e Ch. 22 sections 22.1-7

Learning Objectives:

e Statistical mechanics of systems that can exchange particles: the chemical potential, grand
partition function, chemical potential and Gibbs function

10.1 Meaning of the Chemical Potential

So far, we have focused on systems for which the number of particles IV is constant. We now
want to consider systems that can exchange particles with their surroundings. In much the
same way that temperature differences drive the flow of heat, it turns out that differences in a
quantity called the chemical potential drive the the flow of particles from one place to another.

What happens if I add a particle to a system? Our combined formula for the 1st and 2nd
law now becomes:

dU = TdS — PdV + pdN (10.1)

where p is the chemical potential. You should think of p as something like an “energy per
particle”: if the number of particles goes up by some amount d/N, the internal energy of the
system goes up by pudN.

In particular, this means that when S and V are held constant, differentiating the internal
energy with respect to N yields the chemical potential:

a (‘gj?f) SV 102

How can we understand this formula? Let’s go back to our Einstein solids. Suppose we have
an Einstein solid with N = 3 oscillators. The multiplicity of the macrostate with ¢ = 3 units of
energy, so U = hwgq, leads to an entropy of,

3+3-1)! 5-4

_2 % S = kpIn10
3B 2 - B

Q(q:3;N:3):(
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Now to find u, we would need to see what happens when N goes up, let’s say by 1 oscillator:
we would compute

(3+4—-1)! 6-5-4

Ug=3N =9 == = 32

=20 = S=kgln20

But this violates that we want to compute p when N changes with S held constant; so, ap-
parently ¢ must get lower. If we insist on keeping the entropy fixed while adding an oscillator,
then we will need to reduce the energy at the same time. In particular, we keep the entropy
the same by lowering g to 2:

(2+4-1)! 5.4

Ue=2N=4 =507 =

=10 = S=kplnl0

So, the result is that U went down as N went up, so the chemical potential y is negative for
this system. This is a general rule of thumb: the chemical potential is typically negative, for
most classically behaving systems. You have to pay some energy cost in order to add an extra
particle to the system while somehow keeping the entropy the same.

From (10.1) we can run through the usual manipulations to find how the other thermody-
namic potentials change as IV changes. In particular, using G = U + PV — TS, the Gibbs free
energy satisfies,

dG =V dP — SdT + pdN

from which we have another useful definition of u:

(oG
"= \oN PT
This result says that p is the slope of G versus N for a given P,T. This is an especially useful

relation because the constraints of constant P and T are experimentally convenient for chemical
systems. We will use this to study phase transitions in the next section.

Some other useful relations can be obtained from the other thermodynamic potentials; for
example, using dF = —PdV — SdT + pdN, we would obtain

_(oF
PN )y

See the example problem in your book + homework problem for more discussion.

What drives a system that can exchange particles to form a particular equilibrium state?
Let’s go back to our Einstein solids. We considered the case where we have 2 Einstein solids
which can exchange heat with each other while remaining thermally isolated from their sur-
roundings. We found that the equilibrium of this system (when there is no more exchange of
thermal energy) is found when their temperatures are equal; this was the configuration that
maximized the total entropy of the two solids.

Now instead, consider two systems that are able to exchange particles with one another.
Equilibrium (no more exchange of particles) will occur when g1 = po: when the chemical
potentials are the same for each system. So, the chemical potential plays a similar role in
particle exchange as temperature does in heat exchange.
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10.2 The Grand Partition Function

We would now like to generalize the partition function to include the effect of changing numbers
of particles. To do this, we need to generalize the canonical ensemble to the case where both
energy and particles can be exchanged between the system and the large reservoir. This is
called the grand canonical ensemble.

The determination of the probability distribution and partition function proceeds in much
the same was as for the regular canonical ensemble. We will consider a system with energy E
and number of particles IV, which can exchange both F and N with a reservoir at temperature
T and chemical potential u, where the total energy and number of particles of the system plus
reservoir is fixed, Fiot = Er+ E, Niot = Nr+ N. The reservoir is much larger than the system,
so Er > FE and Nyt > N.

To proceed, recall that we expect the probability of finding the system in a state labeled
by E and N is proportional to the number of microstates, where the difference is that now
the number of microstates will depend both on how much energy and how many particles are
partitioned into the reservoir versus the system:

P(E,N) x Qr(ERr, Nr)Qs(E,N) = Qr(FEtot — E, Nyot — N)

where again we have taken 2 = 1. In other words, the probability is due to the large number
of possible microstates of the reservoir, which is related to the entropy as

S = kBlIlQR

The next step in our derivation of the Boltzmann distribution was to expand S ~ In{2r in a
Taylor series for small E. We will need to do the same thing here, this time for small £ and
small N. The key is that now the entropy of the system can be considered to be a function of
U,V,and N, S(U,V,N), so that

as = 95 du + 95 av + 95 dN
oU ) v oV )nu ON ) v

Then, we see that dU = TdS — PdV + pudN implies

95y _1 95V _ K
/)y T’ ON/)yy T

We'’ve already used the first relation many times to relate the temperature and the entropy
(where we were assuming constant particle number anyway), but we’ve gained a new equation
that relates the change in entropy with respect to number of particles to the chemical potential.
(As an aside: the relations yp = —T'(0S/0N)|y,v and p = (OU/ON)|s,y also can be seen to be

related by one of our partial derivative formulas:
Uy _ (o (oS
ON)g 0S8 )N \ON ),

(5).~- (%), ().
p=-1(-%) v

T
End aside.)
Now, expanding S = kg InQg, we find:
ds ds
S(Etot — E, Nyot — N) = S(Etotf Nwt) B E@ Eiot a AN’ Ntot
E Ny
=kpInQr(Fiot, Ntot) — — + — + ...
B I QR(Eiot, Niot) T+T+
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Taking the exponential, we see that
P(E,N) o< Qg(Eiot, Nyop)e PEHNE

This is known as the Gibbs distribution; it’s proportional to the Boltzmann distribution,
with an exponential factor e®*N to account for the effect of the changing number of particles,
so that it explicitly depends on E, N, u and the equilibrium temperature 7T'.

As usual, to normalize this probability distribution we need to divide by the sum over all
possible states of the system, where now the possible states are labeled both the values of E
and N. Supposing a discrete set of possible values labeled by some integer n as (E,, N,), the
result is the grand partition function:

7= luln-En)

Then, the normalized Gibbs distribution is

e/B(iu'Nn_E’ﬂ)

P(E,,N,) = 7

Much as all the information about the canonical ensemble is contained in the partition
function, all the information about the grand canonical ensemble is contained in the grand
partition function. From Z we can derive all the various functions of state that we wish, where
now the answers that were valid for the canonical ensemble will be modified to account for the
nonzero chemical potential. For example, we can compute (you will show these relations on
your homework!) that the average number of particles is,

1 /0lnZ
N = Z N,P, = = ( >
" B\ On g
while the average internal energy is modified by a u dependent term,

olnZz
— SN E.P, = - N
U= (%57),+

Particle number conservation laws An important aside on particle number conservation.
The chemical potential u is associated with the conservation of particle number: it is nonzero
and able to change only when the system exchanges particles with an external reservoir, where
total particle number of the reservoir plus system is conserved.

This idea is not applicable to particles that have no such conservation law concerning particle
number, such as photons in vacuum. In vacuum, photons can be created/destroyed willy-nilly;
there is no sense in which some total number of photons is conserved. In such cases, p = 0.
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11 Phase Transitions

Textbook readings: (a first reading is due before Lecture 22; most pertinent to Lectures
22-23)

e Ch. 28, all

Learning Objectives:

e Phase transitions! Focus on Ch. 28.1-28.3.

A phase transition is an abrupt, discontinuous change in the properties of a system. Exam-
ples include steam condensing to water, and water freezing to ice. In this section, we’ll explore
some properties of phase transitions in detail.

11.1 Latent Heat

Recall we’ve defined heat capacities as

oS
Co=T|—=
().
for x the constraint of either P, V. The heat capacity tells us how much heat we need to apply
to change the temperature of a substance.

Consider two phases in thermodynamic equilibrium at some critical temperature T,. Often
to change from 1 phase to another at a constant temperature T}, you need to supply some extra
heat to the system, known as the latent heat L,

L=T.(% )|

where S7 is the entropy of phase 1, and S the entropy of phase 2. This implies that there will
be a spike in the heat capacity as a function of temperature at the phase transition.

steam

f

L/T,
l spike in Cp

Water

1 | I | |
300 350 T}, 400 450 500
T (K)

Figure 9: Plot of the entropy as a function of temperature near the boiling point phase transition
of water (from Blundell).
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For instance, consider the liquid-gas phase transition. Recall when we first discussed the van
der Waals equation, we argued that as the temperature is lowered, there is a critical temperature
T, where a phase transition occurs and the system transitions from a gas to a liquid (the gas
condenses), or equivalently as the temperature is raised past T the liquid boils. We can plot
the entropy as a function of the temperature near this transition. There is a discontinuous
change in the entropy at the phase transition, which is indicative of the fact that this is what
we call a first order phase transition. Below the phase transition, C'p of liquid water is about
75 J/(K -mol), and as T changes by an amount AT, S changes by an amount

T dr T
AS—C’/ —01n<f>
"l T P

Similarly, above the phase transition the slope of the line is determined by the Cp of steam,
which is about 34 J/(K - mol). At the boiling point T}, there is a jump in the entropy where
the slope of the line is infinite. This jump AS has magnitude L/T}, where L is the latent heat,
equal to about 40.7 k.J/mol.

11.2 Chemical Potential and Phase Changes

Since there are two possible states involved in the liquid-gas phase transition — the gas and the
liquid state — we could consider more general configurations where part of the system could be
a liquid, and part of the system could be a gas. This situation is called phase equilibrium.
For instance, when you boil water to make a cup of tea, you see the liquid/gas states co-exist
as a mixture once water hits the boiling point. In general, how do we figure out if/when this
can happen?

Recall that when systems are held at constant pressure and temperature, the quantity that
must be minimized is the Gibbs function G. We wrote last time that for a system that is allowed
to also have changing particle number, the Gibbs function changes with P, T, and N as,

dG =VdP — SdT + pdN

More generally, if there is more than one type of particle, we would introduce a chemical
potential p; for each species of particle ¢, with number N;. Then, at constant pressure and
temperature,

dG|pp = Z 1N

So, consider the situation where we have N7 particles in phase 1 in mechanical and thermal
equilibrium with Ny particles with phase 2, at constant pressure and temperature, where the
two systems can exchange particles. Since we are in equilibrium,

Giot = N1p1 + Nopo = fixed

To remain in equilibrium while changing the number of particles in phase 1 (say by A), the
number of particles in phase 2 must decrease by the same amount, this means that we must
have

(N1 4+ A)pg + (N2 — A)pg = Nipy + Nopro = iy = fio

So in phase equilibrium where two phases coexist, u; = us.
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p+dp

T T+dT

Figure 10: The coexistence line of two phases in the P-T plane.

11.3 Phase Boundaries

Now, suppose we wish to plot the liquid-gas phase diagram in the P-T plane. The co-existence
region of the phases is a line on which the condition p; = pg is satisfied, which is determined
by the equation

Mliquid(Pa T) = ,U'gas(P7 T)

so (call the liquid phase the 1st phase and the gas phase the 2nd phase), as P and T change,
we require

p1 (P +dP, T +dT) = dus(P + dP,T + dT)
Om </} _ Oz Ona
p1(P,T) + <8P>TdP+ (aT)PdT—MQ(P,T)—i— <8P TdP+ 5T PdT

The first terms cancel, since p; = po on this line. Recall that we can think of the chemical
potential p as the Gibbs function per particle,

M:N

so that we can identify these partials with partials of G:

<8,u) = : <8G> = K = volume density v
T

P N\oP), N
(‘lu —i % ——E——ntr densit
oT P_N oT P_ N CHitopy censity s

so that the condition becomes
v1dP — s1dT = vodP — sodT

which allows us to solve for

P _ 5=
dT_UQ—’Ul

where again, s; is the entropy per particle in phase 4, and v; is the volume per particle in phase
i. Equivalently, we can consider s and v to be entropy and volume per mole, so that everything
on the right-hand-side is a molar quantity. (This is the easier way to think about this — think
of u = the Gibbs function per mole g, so that we are really just equating dg; = dgs.)
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This expression can be re-written in terms of the latent heat L. = T'AS, in which form it is
known as the Clausius-Clapeyron equation,

dP L
dT T(Va— 1)

This expression allows us to determine the coezistence curve in the P-T plane.

Approximation for a liquid-gas transition: We can solve the Clausius-Clapeyron equation
for P(T') if we make the following assumptions: (1) that the latent heat L is constant, (2) that
the vapour (the 2nd phase) can be treated as an ideal gas satisfying PV = NkpT, and (3) that
Vo > V. For example, for water it is true that Vyas > Wiquid, and this would be an error of
less than 0.1%. With these assumptions, we can solve

dP L LP / dP L / dr
— - —

dT ~ TVy,  T?Nkp P Nkp) T?
P L 1 1

P(T) _ P’ie*iNkLBTJrconst
This equation describes the phase boundary of the liquid and gas phases, under the above
assumptions.

Approximation for a liquid-solid transition: For a solid to liquid transition (melting),
it is not a good approximation to assume that V5 > Vi; instead we should account for some
finite AV, where actually typically AV is usually quite small (Vo ~ V7). In this case, if we can
approximate that (1) the latent L is approximately constant, and (2) the volume change AV is
approximately constant, then we would find

P L L T
ar_ = /dP: df

dT  TAV AV | T
L T
P=F=Zxyhz

For example, consider the phase diagram of water. The coexistence line of the liquid-gas
phases (boiling) is described by P(T) ~ const x e %/(BT) where L ~ 40.7k.J/mol, and the
coexistence line of the liquid-solid phases (melting) is described by P(T') =~ A—LVInT + const
where L ~ 6.01 x 103 J/mol. The actual plot is shown in the figure.

For example, at fixed pressure P < 217 atm, as we increase the temperature there is a first
order phase transition first when the solid ice melts to liquid water, and then when the liquid
water evaporates to gaseous water vapor. At high enough pressures, however, when the water
is heated above the critical temperature T, there is no sharp distinction between the liquid/gas
phases. This critical point at the end of the phase equilibrium line is the point we discussed
when considering the isotherms on a P-V diagram of the van der Waals gas; it’s the point where
the isotherms have an inflection point dP/dV = 9*V/0V? = 0 at constant T). Note that this
diagram also has a triple point, where there is a certain temperature where all three phases
(solid, liquid, gas) can coexist.
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Example Problem: The graphite-diamond phase boundary

Consider the linear phase boundary on a P-T diagram for carbon. The table below lists
the Gibbs energy of formation, the entropy, and the volume for 1 mole of graphite and
carbon at 300K and pressure P = 1 atm = 1.01 x 105 J/m3.

(a)

G (kJ)| S (J/K) |V (em?)
Carbon (Graphite) 0 5.74 5.30
Carbon (Diamond) | 2.90 2.38 3.42
100 -

Diamond

Graphite

&

Liquid |

TS R PO | SR PR

0 1000 2000 3000 4000 5000 6000
T (K)

Calculate the slope of the phase boundary at T" = 300K. How does your answer
compare to the figure?

Solution: First we should recall that the latent heat of the transition is given in terms
of AS at a fixe temperature as,

L=T(Sy — 51)
We know from the Clausius-Clapeyron equation that the slope in the P-T plane is
given by

1 tt t T—E—L—ﬁ
slope at temperature T = T~ TAV — AV

substituting for the values in the table,

AS  (5.74—2.38)J/K 105cm3 6 J
SOPCE AV T (5.30 —3.42) em® . md 1107 70

(34—20)10%bar 105J/m3
(1000—500) K Tbar

Comparing to the figure, I would estimate the slope as
2.8 x 10° J/K - m3. Not too bad, right order of magnitude!

If graphite is compressed while being held at 300K it will eventually turn into di-
amond. This should occur when the Gibbs energy of diamond is equal to that of
graphite. Find this transition pressure by determining an equation for G as a function
of P of both graphite and diamond.
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Solution: At fixed temperature and increasing the pressure from P = P; to the tran-
sition point Py, we will cross the phase boundary and undergo the phase transition
when G (Py) = G2(Py). At fixed temperature, assuming the volume doesn’t change
much with the pressure, we have that G(P) is given as,

dGi|, =VidP = Gi(P)=Vi(P — P,) + G1(P)

dGQ‘T =VodP = GQ(P) = VQ(P — Pz) + GQ(P/L)

In other words, AG = VAP in each phase.

A

—+— P

Py

So, at the phase transition, we set the Gibbs energies equal to one another,
Gi1(P:) = Go(P) = Vi(P. — P) + Gi(P) = Va(Pe — P) + Ga(F;)

which allows us to solve for P, as,

Gl(Pi) — G2(Pi)
(Vo —11)
— 2. 103 106 em3

- ((% 12 i305) 3?)) cOmSJ ‘ 017;? +1.013 x 10° J/m* = 1.54 k.J fem®

=154 x 10° J/m?

In this last problem, we saw that the stable phase as a function of P is the one with smaller
Gibbs free energy. So, at fixed temperature, when the pressure is greater than P, diamond
is more stable, while at fixed temperature when the pressure is less than P, graphite is more
stable. This is why the transition goes from graphite to diamond as the pressure is increased.
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In-Class Exercise: The pressure melting of ice

The density of ice is 917 kg/m3. The density of water is 1000 kg/m?. The latent heat of
transformation for ice/water is 333 J/g. How much pressure would you have to put on an
ice cube (say 1g of ice) to make it melt at —1° C instead of 0° C?

Solution: This problem explores the fact that when you apply extra pressure to ice,
you lower its melting point! Clausius-Clapeyron tells us that,

ap L

dT" TAV
We know that ice usually melts at 0°C, at normal pressures of P = latm. Assuming that
the densities of water/ice and the latent heat do not change much with the temperature

or temperature, we can solve for the pressure difference in making the transition happen
at T'= —1°C versus T' = 0°C' by integrating,

AP

_L/dT_ L 27215K
AV T T AV OB K

We can convert the densities we’re given to volumes per kg by inverting

Pwater = 1000 kg/m? Pice = 917 kg/m?
= AV/kg =1/pwater — 1/picec = —9.05 x 1075 m? /kg

so that,

333J/g x (10°g/kg) L, 27215
9.05 x 107°m3/kg ~ 273.15
latm

=1. 107 3 =133.3at
35 x 10" J/m ><1'013X105J/m3 33.3atm

AP =

So, we expect to have to apply an additional 1.35 x 107 Pa = 133.3 atm of pressure to melt
ice at one lower degree. (That’s a lot...)

Note, that it is actually a very good approximation to not do out the integral, and
instead use

_LAT 333J/gx10°g/kg 1K
T AVT T 9.05 x 1075 m3/kg 273.15 K

AP =1.35 x 10" J/m?.

Similarly, this is why the boiling temperature of water on Mount Everest is lower! The
pressure at the top of Everest is about 1/3 the sea-level pressure. To get a rough estimate of
the change in the boiling point, we can use that AP ~ —0.7 atm; AV ~ V,,s which we can obtain
from the density of water vapor pga.s = 0.6 kg/m? at T = 100°C; look up L =~ 2.3 x 103.J/g;
and approximate dP/dT ~ AP/AT. This yields the estimate,

AP L L 0. 5 J/m3
AP _ Loy ap JTAP _ BWBE)(07x10°0/m?)
AT TAV T Lp, (2.3 x103./¢)(0.6 x 103 g/m3)

(Of course, the more correct thing is to repeat the derivation of (11.1)... this is the faster
back-of-the-envelope calculation.)
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12 Blackbody Radiation

Textbook readings: (a first reading is due before Lecture 24; most pertinent to Lectures 24)

e Ch. 23.5-23.7

Before moving on to the fully quantum treatment of gases of massive particles, we turn briefly
to the quantum treatment of light. We will consider essentially a gas of photons — the quanta
of the electromagnetic field — and understand some of its properties, including the distribution
of wavelengths. (Or, in other words, its color!)

Blackbodies are an idealized system for understanding absorption and emission of thermal
radiation. As you likely know, any real object when heated emits radiation (in the form of
photons). It is useful to talk about an idealized body that absorbs photons of of any wavelength
— absorbs all light incident on it — and reflects none back. At zero temperature, such an
object would appear black. But to maintain its temperature in thermal equilibrium with its
surroundings, it radiates an amount of energy equal to what it has absorbed. We would like to
understand the spectrum of radiation as we turn up the heat.

Model: We can model the blackbody as a cavity with a small hole out of which radiation
can leak. The blackbody absorbs all radiation incident on it, and re-radiates out energy which
is characteristic of the blackbody and not of the light incident upon it.

What we can measure is the spectral energy density of the electromagnetic radiation, u, as
a function of the frequency or wavelength of the light and at a given temperature. (Recall that
these things are related as A = 2m¢/w). You can think of this as the intensity of the emitted light
per unit wavelength, since the intensity is just proportional to the spectral energy density up to
some constants. The total intensity of the emitted light integrated over all wavelengths is equal
to the area under this curve, which experimentally was found to obey the Stefan-Boltzmann
law: that the radiative flux from a blackbody is oT*, with o5 = 5.67 x 1078 W/(m? - K*).

So, how do we compute the spectral energy density? (We will not actually do the compu-
tation here, but just conceptually talk through the main ideas.) Choosing to work with the
angular frequency w rather than wavelength, the spectral energy density u(w,T')dw is the elec-
tromagnetic energy per unit volume at temperature 7, in a frequency range of (w,w + dw).
It is equal to the density of states — the number of modes in the cavity per unit volume with
frequencies between w and w + dw — times the average energy per mode,

So, there are 2 ingredients to the calculation. (1) We need the density of states g(w)dw. Photons
are massless particles traveling at the speed of light, and their energy is determined by their
wavelength A or equivalently frequency w = 2wc/A, as E = he/\ = hw = hkce. We thus need
to re-do the particle-in-a-box computation of the density of states from earlier, but now asking
how many standing waves can fit in the cavity of volume V with the dispersion relation F = hiw
in a given frequency range. The result of this computation is,

g(w)dw = mdw

(2) We also need the average energy per mode, (F(w)). In the 1800s, people figured that the
origin of the radiation was thermally excited, harmonically oscillating electrons in the walls of
the cavity, whose average energy per mode would follow the equipartition theorem, (E) = kgT.
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Back in 1895 nobody had any reason to think that energy was related to frequency or wavelength,
so even though people knew about Boltzmann’s factors, it did not seem relevant.

However, this idea had a problem: if (E(w)) = a constant, then one would predict that
at high frequencies (small wavelengths) the measured intensity of the radiation should have
increased without bound, as u(w,T') ~ const x Tw?. This didn’t at all match the data, and was
dubbed the ultraviolet catastrophe.

Enter Max Planck: Planck’s fix was that the density of states is fine, but that the average per
mode is not... we need statistical mechanics! What we should really do is derive the partition
function for a gas of photons in a box of volume V', and then calculate the average energy from
the partition function. While we’re not actually going to do that computation, we’ll note the
main ideas. Since the number of photons is not conserved (there is no reason the walls of the
box can’t absorb one photon and emit 2!), we cannot define a chemical potential for photons,
and so we need to consider states with any number N of photons. A state with N photons of
definite frequency w has energy £ = Nhw. The partition function for fixed frequency, summing
over N, is

1
_ —B(Nhw) _

The final form of the partition function is derived from Z,, by taking into account the sum over
all possible frequencies (which will of course again require the density of states!) Once we have
Z, we can compute (E) with the usual formula that involves differentiating with respect to 3,
with result:

(B() = g

Note that expanding this expression at high temperatures matches on to the classical expec-
tation: as 8 — 0, (F) — kgT. However, now this is a function of w, and plugging into the
spectral energy density now yields,

h w3

e, T)dw = 555 oo =1

dw

This result is a good match to the experimental data, fixing both the UV catastrophe, and
reproduces the Stefan-Boltzmann law.

Planck’s achievement of the blackbody spectrum by applying Boltzmann’s statistical meth-
ods to photos provided the first hints of quantum mechanics. Key to the derivation is the fact
that light comes in quanta — photons. This insight helped kick off the quantum revolution in
the early 1900s.
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13 Quantum Statistical Mechanics

Textbook readings: (a first reading is due before Lecture 24; most pertinent to Lectures
24-26)

e Ch. 29, all

Learning Objectives:

e Quantum statistical mechanics for simple systems

e Fermi-Dirac statistics, Bose-Einstein statistics, Distribution functions

13.1 The Need for More Quantum

We are now going to consider the way in which quantum mechanics changes the statistical
properties of gases. Let’s first review where we had gotten with our semi-classical /semi-quantum
ideal gas.

e We said particles were waves, with momentum p = h/\ = hk (Quantum).

e We said that short wavelength waves had more energy than long wavelength waves, E =
p?/(2m) = RA?k%*/(2m) (Quantum), and therefore we are less likely to find particles in
short wavelength states, P ~ e=#7°**/(2m) (Classical Boltzmann).

e We said that there is a density of states as a function of wavevector that says there are
more states at higher wavevectors / shorter wavelengths, g(k)3q = Vk?/(272) (Classical
waves-in-a-box).

e We integrated a product of those states and their probabilities to get Z; for a single
particle (Classical Boltzmann).

e For N particles we raised Z; to the N but then we divided by N! so we would not

zN . .
double-count arrangements, Zindistinguishable = NT (Classical Boltzmann-Gibbs).

When do we need to go beyond this treatment to a full quantum mechanical treatment?

Boltzmann statistics accounts for the wavefunction interpretation of particles and states that
if any two indistinguishable particles are switched, the state of the system is unchanged (the last
bullet point above). But there is an implicit assumption that there are many more states than
there are particles. When this assumption fails, we find that we have two types of particles:
those that do not mind sharing a state (bosons), and those that do mind (fermions). Bosons
include photons, phonons, pi-mesons, helium-4 atoms, gluons, the Higgs particle etc.. Fermions
include electrons, protons, neutrons, helium-3 atoms, quarks, neutrinos, etc. The spin-statistics
theorem states that bosons have integer spin (0,1,2,...), while fermions have half-integer spin

(1/2,3/2,5/2,...).

Furthermore, the size of the thermal wavelength of the ideal gas particles gives us an indi-
cation of when the semi-classical treatment of the ideal gas from Boltzmann statistics tends to
fail; we will need a full quantum treatment when the wavelengths Ay, start to overlap, so when
A¢h becomes comparable to the inter-particle separation. Since the average volume taken up

101



by each particle V/N, we trust our semi-classical computation when /\fh < V/N. This occurs
when density and temperature are low, or when wavefunctions happen to be very spread out
(as is the case of electrons in a metal).

13.2 Wavefunctions for Identical Particles

The indistinguishability of the fundamental particles has implications for the types of wave-
functions that can describe them.

In particular: suppose we wish to write the multi-particle wavefunction ¥ (z4,zp) that
describes two particles, say an electron who might be found at x4 and an electron who might
be found at xp. The wavefunction yields the probability density for the state, P(x4,zp) =
|(z4,2B)|?. The fact that the two electrons are indistinguishable implies that the probability
of finding electron 1 at x4 and electron 2 at xp must be equal to the probability of finding
electron 2 at x4 and electron 1 at zp; in other words,

P(za,xp) = P(xp,x4). (13.1)
(This of course would not have to be true if the particles were not identical!)

Since P(x4,25) = |¢(x4,2p)|?, this condition (13.1) says that |¢(z4,25)* = [ (zB,24)|%,
or in other words,”

For any identical 2-particle wavefunction: ¢ (xa,xp) = ¢ (zp,x4) (13.2)

We conclude that indistinguishable particles come in one of two types: particles whose wave-
functions are symmetric under exchange, i.e. satisfying ¥(xa,2p) = +¢¥(xp,z4), and those
that are antisymmetric under exchange, satisfying ¢ (z4,2p) = —¥(xp,x4). We call the former
types of particles bosons, and the latter fermions. It is an experimental fact that electrons are
fermions; their wavefunctions are antisymmetric under exchange of two particles, while photons
(for instance) are bosons. In fact, there is a theorem called the spin-statistics theorem which
proves that all particles with half-integer spin (like the electron, with spin 1/2) are fermions,
and all particles with integer spin (like photons, with spin 0) are bosons.

An immediate consequence of the fact that fermions have antisymmetric wavefunctions
is that if a system includes two identical fermions, they cannot be in the same place: since
Yr(xa,xp) = —Yf(xp,x4), setting x4 = xp implies that ¢ r(xa,x4) = —Y¢(za,24), which is
only possible if the wavefunction is equal to 0 so that there is zero probability of finding the
two identical fermions in the same location. Fermions are antisocial particles (they need their
space!) while bosons are social (as many as they like can occupy the same space at the same
time). This fact that we can’t find two identical fermions in the same location is called the
Pauli exclusion principle. More generally stated, the Pauli exclusion principle states that no
two identical fermions can simultaneously occupy the same quantum state.

This of course has implications for configurations of particles. Imagine a particle can exist
in one of two states, states + and —. If there are two such particles, what are the possible states
for this system to be in? The answer depends on the particles’ statistics.

(a) If the particles are distinguishable, say labeled by A and B then there are four possible

%You might complain that actually this only requires ¢(za,zp) = €9 (zp,x4), where the phase could be
something other than £+1. It turns out that this possibility is not possible in 3 dimensions, but is possible in 2

dimensions, where particles called anyons with non-integer / half-integer statistics are possible.

102



states:

(+7+), (+a _)7 (_a+)’ (_a_)
where here the first position specifies A’s state, and the second B’s state.

(b) If the particles are indistinguishable but classical, then there are only three possible states:

(+’+)’ (+7_)7 (_’_)

Since we can’t tell the difference between A and B, so all we can measure is that one
particle is + and the other —, so (+,—) = (—,+) count as the same state. This is the
case we considered in our treatment of the ideal gas.

(c) If the particles are indistinguishable bosons, there are also only 3 states. However, bosons
need to have wavefunctions that are symmetric under particle exchange, so the 2-particle
wavefunction corresponding to the case where one particle is + and the other — needs to
be a linear combination,

¢(+a+)a 17[}(_}'3—) +1/}(_a+)a 7/)(—7—)
since under particle exchange, (4, —)+1¥(—,+) = ¥(—,+) +¥(+, —) goes back to itself.

(c) If the particles are indistinguishable fermions, then there is only one state — no two
fermions can be in the same quantum state, so the (+,4) and (—,—) options are not
allowed, The wavefunction needs to be antisymmetric under particle exchange, so the
only possible 2-particle wavefunction is of the form

¢(+7 _) - ¢(_7 +)

This is so that under particle exchange, the wavefunction gets a minus sign: ¥ (+,—) —
(=, +) = ¥(—,+) — ¥(+, —) is minus itself.

13.3 The Statistics of Identical Particles (fixed N)

Let’s start easy with some counting problems for fixed number of particles (so, no worrying
about the chemical potential). For example, let’s say we have a system with 3 possible states,
all of which have the same energy E. We want to compute the 2-particle partition function,
which will be different depending on the statistics of the particles.

e What is the 1-particle partition function? We need to sum over the possible states. The
particle could be in one of the three states, all of which have energy F, so

Zy = e PE 4 e7PE 4 ePE = 3¢ PF
e What is the partition function if the system has 2 distinguishable particles? As we learned,

for distinguishable particles that can independently be in different configurations, we
should take

Zn gist = 2 =  Zo= 7} =9e2F

(If you want to verify this for yourself, count the states! There are 6 configurations where
the 2 particles are in separate states, and 3 configurations where the particles are in the
same state. The total energy of each of these configurations is 2F. So, the partition
function is 9 x e~28F))
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e What is the partition function if the system has 2 identical bosons?

Now we want to be careful about not overcounting. There are only 3 configurations where
the 2 particles are in separate states (this is 3 choose 2 = 3), plus 3 configurations where
the particles are in the same state, which adding everything up gives

—2BFE
Z2 bosons = Ge g

e What is the partition function if the system has 2 identical fermions?

Fermions can’t share, so now there are only 3 configurations where the 2 particles are in
separate states; adding everything up we get

22 fermions = 36_26E

e What is the partition function if the system has 2 identical particles obeying Gibbs’ cor-
rected classical statistics? Gibbs told us to approximate the 2-identical particle partition
function with a 1/N!, so

i i 26E
m = ZQ = ? = 45 e
We see that this is actually the average of the answer for the fermions and bosons. So,
this approximates quantum statistics, but doesn’t get it quite right!

ZN ind. =

We now want to apply the logic of the last subsection to the statistics of many more than
two identical particles. This means we need to figure out how many particles are allowed in each
state, which as we’ve discussed we expect to be different depending on whether the particles are
distinguishable, classically indistinguishable, or treated as bosons or fermions. Let’s denote this
number of particles in the ¢’th state with energy FE; as n;. We call n; the occupation number
of the state. We’ll demonstrate this idea through the following example.

In-Class Exercise: A pictorial method for quantum statistics

We have a collection of N fermions in a system where the energy levels are non-degenerate
and evenly spaced. The lowest energy level has energy F;, the second lowest energy level
has energy Ey = 2F1, and so on, so the i'th energy level has energy F; = iFE;.

Assume that the fermions all have the same spin, so each energy level can only be
occupied by either 1 or 0 particles. We can represent the possible states of the system with
increasing total energy units ¢ by a simple column of white and filled dots, where filled
dots represent occupied levels, and white dots represent empty levels.

For an N = 4 fermion system, what is the degeneracy /multiplicity of the ¢ = 5 level
(total energy = FEground-state + 5£1)7 For the ¢ = 5 level, calculate and plot the average
occupation number versus energy level.

Solution:

We have N = 4 fermions. Each level can only be occupied by at most 1 fermion, so the
occupation number of the i’th level can be n; = {0,1}. The ground state of the 4-fermion
system (which we label by ¢ = 0) consists of the 4 fermions each occupying one of the four
lowest energy states, and has total energy

Egroundestate = B0 = By + Ey + B3 + Ey = 10E; .
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The occupation number of the i’th energy level in this ground state, n;, is equal to: n; =1
fort=1,2,3,4, and n; = 0 for ¢ > 4.

Now increase the total energy units ¢ by 1 to consider the first excited state of the
4-fermion system. The total energy of this state is now E(@=1 = E(@=0) L E|  This state
consists of 3 fermions each occupying the first 3 levels, and one fermion occupying the 5th
level, since this configuration has total energy increased by 1 unit from the ground state,
EW@=Y) = B+ Ey+ Es+ Es = 11E; = E@0 4 B, So for this state, n; = 1 fori = 1,2, 3, 5,
and n; = 0 otherwise.

Increasing the total energy units by 2, we find a degeneracy: there are two microstates
that add up to the total energy E@=2) = p0) 4 2F; one withn; =1 for¢=1,2,3,6, and
one with n; =1 for i = 1,2,4,5.

At this point the pattern is clear: if we increase the total energy units by ¢, the total
energy of the state is (@ = E(©) 4 ¢F;. This total energy has to be equal to the sum over
the energies E; of the individual energy levels times their occupation numbers,

E@ = g0 4 qF = Z n By = Fq Z n;i n; = {0,1}

where the occupation number is restricted to be n; = {0, 1} since identical fermions can’t
share the same quantum state. Since for this 4-fermion system we had that the ground state
has E(®) = 10E}, for this particular system the state with ¢ total energy units satisfies,

10+qg=>Y ni, ni={0,1}.
=1

For a given value of ¢, there will be degeneracies if there are multiple different choices of
the occupation numbers that give the same value of this sum on the right-hand-side.

Energy level i

&) O e¥e Yele!
S) O O 000
T CH) Oe ooe
9 O Oe cee
>
% » O 'YeX
S 2 ° Yo
W
9 ° YY)
I q
q=0 q=1 q=2 q=3

We can now answer: for this 4-fermion system, what is the degeneracy/multiplicity of
the ¢ = 5 level (total energy E(®) + 5F;)? The answer is 6, where

n;=1 for ¢=1{1,2,3,9}; {1,2,4,8}; {1,2,5,7}; {1,3,4,7}; {1,3,5,6}; {2,3,4,6}
and n; = 0 otherwise.

We now wish to calculate and plot the average occupation number versus energy level
for ¢ = 5. For ¢ = 5, there are 6 microstates as described above. In each of the microstates,
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n; can be 0 or 1.

1+1+1+1+1+0:
1—1—1—!—1—?—14—0—!—0:
1—|—1—|—1—?—1+0—|—0:
1—|—1+1—?—0—|—0+0:

6
1+1404+0+0+0

6
1+140+0+0+0

6
1+1+0+0+0+0

6
1+0+0+0+0+0

6
1+0+0+0+0+0

6

(ng) =

DN DD WD =D =D Ot

<ni>9> =0

Two notes about these results: firstly, the average is always less than (or in principle equal
to) 1; this must be the case, since there can’t be more than one fermion occupying any
given level. Also, note that that > ,(n;) = N = 4, so that the sum of the occupation
numbers over all the energy levels equals the total number of particles.

Average occupation #

of i’th level (”h)
q=>5

06
0.4

0.2

Energy

1 2 3 456 7 8 9 10 1 leveli

Example continued: bosons Now consider the same set of evenly-spaced, non-degenerate
energy levels Fy, Fo = 2FE1, E3 = 3E1, ..., with a collection of N bosons. Each energy level can
be occupied by any number of particles, and we can represent the possible system states with
increasing total energy units ¢ by a simple row of boxes with numbers in them. Plot a graph of
the average occupation number of the levels versus the energy level for the total energy units
q =5 (total energy E = FEground-state + 9F1).

In this case, the ground state has all N bosons in the first energy level Ey, so
Eground—state = E(q:O) = NEl .

The first excited state has N — 1 bosons in the first energy level and one boson elevated to the
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Average occupation number

0 0 0 0 0 .
1 efrodlefiodiodfoliol of 'th level ;)
1 01l 0 0fl0 0 0 15
S M g=>5
S Ojjojl1|{o]jo0]jo0]]0 4 bosons
: |l | | L v L s L 1.0
@ [ollifloflofltlloflo .\
i=3 iLiiiLi 0.5 4 fermions
i=210{lo0 1 1 2 3 5
i=1 Py - - - 1“Heﬁ?ﬁﬁm
gq=>5

second energy level, so that
E(q:l) — (N — 1)E1 + By = (N - 1)E1 +2F = Eground—state + Ey

where recall that Es = 2F;. We can continue counting up, so that the energy level with ¢
energy units above the ground state has energy F (@ = Eground-state + qE7.

For N > 5 there are 7 microstates with ¢ = 5 total energy units above the ground state.
These microstates have the following nonzero occupation numbers:

{m:N—l,nﬁzl}, {n1:N—2,n3:1,n4:1}, {m:N—Q,ngzl,ng,:l}
{nlzN—3,n2:1n3:2}, {m:N—3,n2:2,n4:1}, {nlzN—4,n2:3,n3:1},
{m:N—5,n1:5}

These all satisfy in each microstate,

Z Ein; = E; Z in; = Eground—state +5E, Vv
i 7

We can compute the average occupation number in the ¢’th level as,

(N—1D+2(N-2)+2(N=3)+(N—4)+(N—-5) TN -2

() = 7 7
<n>_1+1+2+3+5_}g
2= 7 — 7
<n>_1+2+1_4
S T ¢
141 2
=" =7
1
<n5> = ;
1
<n6> = ;
(nis¢) =0

As a check that we got these numbers correct, the sum over all the average occupation numbers
yields the total number of bosons, > .(n;) = N. Now the average occupation number can
certainly be larger than 1, since bosons can crowd states!
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Note, however, that for N = 4, the last microstate listed above is not possible and there are
only 6 microstates, which changes the averages as follows,

(N=1)4+2(N—2)+2(N—3)+(N—4) 9

(n) = 6 6
<n>_1+1+2+3_z
20 6 "6
m>—1+2+1—§
T 6 T 6
141 2
=" =5

Again, we can check that ) (n;) = N = 4.

13.4 The Grand Partition Function for Identical Particles

In these previous examples we fixed the number of particles, > . n; = N. Generally, however, we
are interested in cases where the number of particles is not fixed. WARNING: The formulas
in section 29.3 of the book can be somewhat confusing, so I recommend sticking to the formulas
as written below!

Before when we built the partition function for a set of (classical) non-interacting particles,
we used that the N-particle partition function is the product of all the 1-particle partition
functions,

Z = H A N-particle partition function (13.3)

Then we considered the grand partition function where N could vary, so that if our states were
labeled by an integer n with energy E, and particle number N,,, the sum over states is given
by

Z = Z e~ AEn—pln) grand partition function (13.4)
n

We now wish to determine the grand partition function for bosons and fermions. However, we
just did a number of counting exercises in determining the energies for various particle numbers
N,, from which you might conclude that it is quite complicated for a given particle number to
count how many states are possible for the system. Working in the grand canonical ensemble
where N can vary, it is actually simplest to choose a different way of adding up all the different
possible microstates of the system, as follows.

Our system has some available states labeled by 4, with energies F; and occupation numbers
n;. Rather than considering a single particle as a subsystem and taking the product of all single
particle subsystems, we will partition up the system into subsystems of the available states
labeled by i. For a state with occupation number n;, the energy is n;E; (the total number of
particles in that state times the energy of that state), so the corresponding Boltzmann-Gibbs
factor is e ™P(Ei=1)  But n; can vary, so the partition function Z; corresponding to the state
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1 is the sum over all possible microstates corresponding to a state 7, which is the sum over the
occupation numbers possible for that state:

Zi = Z e~ niB(Ei—p)

This is the grand canonical partition function for a subsystem in the quantum state ¢. Then, the
partition function for the entire system is the product over all possible subsystems of quantum
states,

Z = H Z; grand partition function, take 2
i

In this way we capture all the possible configurations of all possible particle numbers of the
system, but in a much more useful way than in (13.4).

To summarize: the grand partition function is the sum over all the possible microstates. We
get to choose how to execute this sum. Since we want to do this for case of varying particle
number, it is easiest to view this as a sum over all possible occupation numbers for the i’th
state, considering that as a subsystem, so that the total partition function is a product over all
possible quantum states 1.

Bosons Now we need to perform the sums/products! For bosons, there are no restrictions on
the occupation numbers n;; in a system where particle number can vary, any state might have
any number of particles in it. So, we need to perform the sum,

Zj(bosons) _ i efmﬁ(Eifu) — io: (efﬁ(Ei*M)>ni
n; =0

n; =0

This takes the form of a geometric series,

> 1

Srho i e
1—z

k=0

so that?

(bosons) 1
Zi o 1— 6_5(Ei_u)

The grand partition function for bosons is then the product,

1
7(bosons) _ H Eqp— Ty grand partition function for bosons (13.5)
41— e PlE

7

To compute some physical quantities, it is often useful to take the log, and remember that
In(abc...)=Ina+Inb+1Inc+..., so that the product becomes a sum:

In Z°°™ = — " In (1 _ efﬁ(EWU

3 The convergence of this sum requires that < 1, which means p < FE; for all states, or in particular
< Eground—state-
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For instance, from (13.5) we can compute the average number of particles as,

19InZ 1 pe? 1
A I DL K=

What is this quantity? Compare it to the average particle number in the state ¢, which is given
by the occupation number (n;),

10lnz; 10 1 1 Be BEi—p) _ 1
B o 5 au 1—eBE-—w | B1—eBE-"D  BE-—p 1
This average occupation number for bosons is known as the Bose-Einstein distribution. We

see that the average number of particles is precisely equal to the sum over all the states of the
average occupation number per state,

(n;) =

as expected!

Fermions Alternatively we can consider a gas of fermions. For fermions, the occupation
number n; can only ever be 0 or 1 from the Pauli exclusion principle, so the sum truncates:

Z(fermions) _ Z e—ni,B(Ei—u) =14+ e—B(Ei—H)

7
n;=0,1

and the grand partition function evaluates to
7 (fermions) _ H Zi(fermions) = H (1 + e‘ﬁ(Ei_“)> grand partition function for fermions
i i
Again, it is often useful to consider the log of this quantity, where the product is converted to
a sum,

In Z (fermions) Z In (1 +e E; u))

We can now compute both the average number of particles, and the average occupation number
in each state. The average occupation number in the state i is given by,

10lnz; 1 1 —B(Ei—p) 1
(ni) = 19In 7£1n (1 + efﬁ(Ez'*u)) —— pe —
/B 8;,4 /B 8# ﬁ 1+ e—B(Ei—M) eB(Ei—M) +1
known as the Fermi-Dirac distribution. This differs from the answer for the bosons by a +
sign rather than a — sign in the denominator. Then, the average particle number of the fermion
gas is,

10nz 1 0 —B(Ei-n) _ '
=B 5 Brnen) - Kl

Let us summarize: the grand partition function for a gas of fermions (+) versus bosons (—)
can be expressed as the following sum over the possible quantum states i,

In Z(* iZln(lie >)
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which yields the following average occupation number in the state i:

() 1

(ng)™ = BE—1) + 1

These are known as the Fermi-Dirac versus Bose-Einstein distributions.

The classical limit In the limit that 5(E; — ) > 1, both of these distributions tend to the
Boltzmann-Gibbs distribution e A(E=#).

BE —p)>1 = (n)H - e AlE—n (13.6)

This is the low density limit, where p is small, and there are many more states accessible
to the particles than there are number of particles. In this limit, you never need to worry
about multiple particles occupying the same state, and both fermions and bosons behave like
classical particles, whose probability of being found in that state is given by the Boltzmann-
Gibbs distribution. This is also the right limit to take in the high-temperature limit (even
though you are tempted in the high-7" / small-g limit to consider 5 — 0!) This is because as
B8 — 0, there is greater accessibility of higher energy states, so large-F; competes with small
B such that B(E; — p) > 1 so that the occupation number remains small. (In particular, we
need that > ;(n;) = N is fixed and small compared to the number of states, which implies the
constraint S(E; — p) > 1.)

So really, we should think of the limit (13.6) as the classical limit of the quantum gas.
Physically, this is the criterion that the mean separation between the particles is much greater
than their mean de Broglie wavelengths.

Gibbs paradox revisited In deriving the Bose-Einstein and Fermi-Dirac distributions, we
used the grand canonical partition function. To excellent approximation, the canonical partition
function Z. for N-particles is related to the grand canonical partition function Z,. as

InZ, =InZy; — uN

(We won’t prove this expression, apologies!) Then for the quantum gases, this expression takes
the form,

mZ =+Y In (1 + e_ﬁ(Ei—M)) — BuN

How does this expression look in this classical limit? Expanding the logarithm for large 5(E;—p)
means expanding for small e #(Zi=#) 5o that In (1 + e*ﬁ(Ei*“)) ~ te BE—1) and

InZ, ~ Z e BE—1) _ gy N

From the expression for N = ) _.(n;), we can expand in the classical limit and take the logarithm,

N = Z<m> ~ Ze_ﬁ(Ei_N) = InN=pfu+1In (Z e—BEZ)

A A

Taking everything together,

nZ.~N-puN=N-N <1nN—1n <Ze—ﬁEz‘>> ~ Nln (Ze—ﬁEi> —In N!

% 7
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where we used Stirling’s approximation, In N! =~ NIn N — N. Putting everything together, we
have found that in the classical approximation, the N-particle partition function takes the form

(> e_ﬁEi)N

Ze N1

which is precisely the single particle partition function raised to the power of N and divided by
N!, as was necessary to resolve the Gibbs paradox. Without quantum mechanics we had to put
in the factor of N! by hand, knowing that we were overcounting if the particles were identical.
But now we see that by imposing the classical limit from the statistics of identical bosons /
fermions, the N! comes out naturally!

13.5 Bose-Einstein Condensation

What happens to bosons away from the classical limit?

If given N bosons at T' = 0, they should all share the exact same state (wavefunction).
But, they have a nonzero chemical potential which should be causing them to repel. These two
effects compete, but at some low enough temperature the system does in fact collapse into its
ground state in a phase transition to a Bose-Einstein condensate.

To argue for this transition, we can look again at a gas of non-relativistic particles, now
through the eyes of quantum mechanics, assuming the particles are (spin 0) bosons. We start
with the non-interacting Bose-Einstein distribution,

1
W”:eM&ﬂo_l

with total particle number (N) = ".(n;). We can compute the total number of particles in the
gas N by converting the sum to an integral using the density of states,

)= Yot} = [ olEg(E) i

Assuming that the gas particles have a dispersion relation like E = h%k?/(2m) (i.e. they are
non-relativistic massive particles), we can convert to a function of the energy E = h%k?/(2m):

4 Vm?/?
k)dk = — k> dk E)dE = ———VEdE

and integrate

Vmd/2 oo VE
uv>_.§:<n»-+ v§w2h3]€ S 1 (13.7)

1
This integral gives an expression for the number of particles in the gas as a function of the
chemical potential and temperature: N = N (u,T)).

While we will not show this explicitly in these lectures, in the classical limit of high tempera-
ture and low density, turning the crank on these equations yields the ideal gas las PV = NkgT,
plus corrections that you can compute due to taking into account the quantum statistics. We
wish to explore what happens away from this limit. We can do this by taking the high-density
limit: fixing V' and T', and slowly increasing N to increase the density N/V. Correspondingly,
i also increases (if the left-hand-side of (13.7) increases, then the right-hand-side must also
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increase, which at fixed V' and T implies p must increase!). But since p < 0 for bosons (recall
for the convergence of the grand partition function we needed p < 0 so that 0 < e®# < 1), this
means that we can increase y — 0 and can’t go beyond that. At the critical value of = 0, the
number of bosons Ngt, given by

3/2 00 E
<Ncrit> = Vim \/> dE
\/§7T2h3 0 ePE — 1

This is an integral that can be done, with result

Neip  2.612
VoA,

So, we reach g = 0 when the number density is very close to the thermal de Broglie density,
which is precisely when quantum mechanics plays an important role. Equivalently, this can be
expressed as occurring at a critical temperature T¢;i; as a function of the number density,

o2 [ N \?*/3
Tcri =
"7 kpm <2.612V)

If we try to increase the density past Ng; or decrease the temperature past Te.it, we would
arrive at a contradiction that p should become larger than 0. This contradiction is occurring
because our approximation in going from a sum to an integral is no longer valid! The problem
is that the non-relativistic density of states,

g(E)dE «< VE dE

implies that g(E = 0) = 0, or in other words that there are no bosons with ground state energy
E = 0 (the ground state with E = 0 apparently doesn’t contribute to the integral (13.7) at all).
But of course, this simply cannot be true. We expect that actually as temperature is lowered,
all the bosons want to go to the ground state!

What’s happening? For most values of e®#, there are just a handful of particles sitting in
the lowest state, and it doesn’t matter if we miss them in the formula (13.7). But as e’* — 1
(meaning . — 0), then we actually get a macroscopic number of particles occupying the ground
state, and at T" = 0 we expect all the particles to be in the ground state. So, the calculation
needs to be corrected to account for these particles. Without going into the details, we can
summarize the results: For T' = 0, all the bosons are in the ground state. For 0 < T < T¢,j, the
ground state has a large fraction of the total number of bosons, so that there is macroscopic
occupation of the ground state. This is known as Bose-Einstein condensation: we call the
condensate of bosons in the ground state the Bose-Einsten condensate (BEC for short). Above
Terit there is a phase transition, where the vast majority of the bosons are in excited states. The
BEC is a funny state: a macroscopic number of particles have merged into a single quantum
state so large that it can be seen with the naked eye!

BEC was predicted by Bose and Einstein back in 1924, and was finally created in the lab
by Eric Cornell and Carl Wieman in 1995. They cooled off a gas of Rubidium atoms to a
temperature of 170 nano-Kelvin, showing that a BEC could be formed with ultra-cold atoms.
Wolfgang Ketterle performed similar experiments with Sodium atoms shortly afterwards. These
three scientists won the 2001 Nobel Prize in physics for their achievement.
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