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1 Introduction

Possibly helpful resources:

• MOST RECOMMENDED: A First Course on Symmetry, Special Relativity, and
Quantum Mechanics by Kunstatter and Das, Chapter 2 through 2.4.1. (Chapter 1 is
also nice background reading material.)

• The article The role of symmetry in fundamental physics by physicist David Gross
(posted on the webpage) is a quite nice, colloquium-level overview of the topic from
his perspective.

• The Feynman Lectures on Physics contain a very nice overview of symmetry in phys-
ical laws, at this link.

• For some supplementary reading, the Stanford Encyclopedia of Philosophy has a nice
article about Symmetry and Symmetry Breaking at this link, paying special attention
to the connection between physics and philosophy. It’s an interesting read, that you
might wish to return to at the end of this course.

• An online gallery of M.C. Escher works gathered on the theme of symmetry, at this
link.

1.1 What is symmetry?

Human fascination with symmetry dates back at least to the ancient Greeks and others who were
interested in the symmetry of objects. Indeed, the word symmetry is borrowed from the ancient
Greeks, for whom its importance was evident in the design of their buildings and appreciation of
beauty. Symmetry plays an important role in art and aesthetics: shapes, paintings, sculptures,
buildings, etc. tend to be more pleasing to the eye if they have some degree of symmetry. In
art, symmetry appears in the concept of balance.

An example that is prominent in nature, art, and physics is bilateral, or mirror-image
symmetry, i.e. the mirror-image reflection of an object about some axis. For example, human
bodies and faces look almost the same upon reflection about the vertical axis.

Figure 1: Examples of bilateral symmetry in art (Swan, Rush and Iris by Walter Crane) and
nature.
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To start, it is helpful to have a general definition of what we mean by a symmetry. (We will
get more formal later!)

Definition 1.1. A symmetry operation is the transformation of an object that leaves the
object unchanged, or invariant.

Figure 2

To get a better sense of this definition, it is useful to think about symmetries of geometrical
objects. For example, consider an equilateral triangle. One type of symmetry operation is
rotation. Rotation by 120◦, one third of a full 360◦ rotation, leaves the triangle invariant. So
does rotation by 240◦. Of course, rotation by 360◦ is equivalent to doing nothing at all. Another
type of symmetry operation is reflection. The possible reflections of an equilateral triangle are
the reflections about each of the three axes going through the three vertices.

Another example are the symmetries of a square. Again, there are two types of symmetry
operations: rotations and reflections. In this case, a symmetry operation is reflection by units of
90◦. Rotating by 90◦, 180◦, and 270◦ each yield unique symmetry transformations. Meanwhile,
reflection across the following axes yield further unique symmetry transformations: the vertical
axis bisecting the square in two halves vertically; the horizontal axis bisecting the square in two
halves horizontally; the diagonal top-left-to-bottom-right axis; and the the diagonal top-right-
to-bottom-left axis. The square has four axes of symmetry, as there are four different ways to
fold it and have the edges match onto each other.

Already in these examples, we can see one property that classifies different types of symme-
tries: symmetries can be discrete (like, reflection symmetry, which involves a binary operation),
or continuous (like, rotational symmetry, which is valid for infinitesimal rotations).

1.2 The role of symmetry in physics

In physics, there was a paradigm shift in the early 20th century where symmetry principles
were understood to be foundational to the way we formulate fundamental physics. One can
argue that this started with Einstein, who understood in his formulation of special relativity
that symmetry principles should be considered as fundamental, themselves constraining the
dynamical laws of nature, rather than some output of the dynamical laws. Einstein recognized
that relativistic invariance dictates the form of Maxwell’s equations, and proceeded to elevate
the symmetry of Maxwell’s equations to a symmetry of spacetime itself, leading to what one
might call the geometrization of symmetry.

The fundamental laws of physics are given by mathematical equations. In classical me-
chanics, these include Newton’s second law F = ma, Newton’s law of gravitation (that the
force between two masses is inversely proportional to the square of the distance between them,
F = Gm1m2/r), etc. In Einstein’s theory of special relativity, these include the Lorentz trans-
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formation law for transforming coordinates of events between two inertial frames of reference. In
Maxwell’s theory of electromagnetism, these include Maxwell’s equations, for instance ∇·B = 0.

In physics, we usually discuss symmetries of a physical theory, by which we mean symmetries
that leave the physical laws (i.e., equations of motion governing the system) invariant. Going
back to our general definition of a symmetry operation, the “object” is typically the system of
equations describing the physical laws, so that the symmetry acts on these laws to give back
precisely the same set of laws.

For example: Maxwell’s equations are invariant under spatial translations,

x→ x+∆x

This type of symmetry is a little different than the geometric type of symmetry of objects we
were just discussing. Translations are a symmetries of spacetime, or spacetime symmetries
— the symmetry operation acts on the spatial coordinates x, so that the laws of physics that
depend on those spatial coordinates remain unchanged. Rather, in the geometric examples the
symmetry was acting on a physical shape / geometric object. Both types of symmetries are of
interest in physics.

So, specifically why are symmetries so useful in physics? There are many reasons, four of
which we will discuss below.

(1) Symmetry as a guiding principle Symmetry is often used as a guideline for construct-
ing new theories. For instance, symmetry played a pivotal role in the formulation by Einstein
of both special relativity as well as general relativity, in that he elevated spacetime symmetries
as fundamental to the formulation of the theories. The Standard Model of particle physics
describing the fundamental particles is organized around symmetries, and has been successful
at predicting new particles based on these symmetries.

In general, certain symmetries are expected to be respected by any viable theory of nature;
for instance, the fact that the laws of physics should be the same anywhere and at all times,
and should not changed if I step to the left, or rotate my laboratory by 10◦, should be true of
any fundamental theory.

As an aside: what do we mean when we say that “a theory” should obey some symmetry?
The job of a theoretical physicist is to construct theories that accurately describe nature. Any
theory that one constructs will only be valid within a certain regime of validity. For example,
classical Newtonian mechanics well describes the macroscopic phenomena of our everyday lives,
but Newton’s laws are only an approximation of the more fundamental laws of quantum me-
chanics that apply to the microscopic world of the elementary particles. On the other hand,
when objects are moving close to the speed of light c, Einstein’s theory of special relativity
is needed to describe their dynamics. In the appropriate limits (for example, at speeds ≪ c),
these more “fundamental” theories should reduce to Newtonian mechanics. Some symmetries
we might expect to be true of all theories of nature, while some we might expect are only valid
in certain limits. When there is a good reason to believe that a symmetry will be or should be
obeyed in some limit in which your theory is valid, that symmetry provides constraints on the
theory.

(2) Symmetry and conserved quantities One of the most important features of symmetry
is its connection to conserved quantities.

5



Why are symmetries related to conserved quantities? Let’s consider a nice conceptual exam-
ple you have probably seen before: a particle of mass m in a spherically symmetric gravitational
potential, under the influence of a massive object M . Newton’s law of gravity leads to the fol-
lowing force that the mass M applies on the mass m:

F⃗ = −GMm

r2
ˆ⃗r = −GMm

r2
x⃗

|x⃗|

where r⃗ is the displacement vector between the two bodies (pointing from the mass m to the
mass M), and ˆ⃗r is the unit vector between the bodies. The gravitational force is said to be
spherically symmetric because it doesn’t matter which angle we are looking at: it only feels the
dependence on the radial distance r between the objects and nothing else. In particular, we can
rotate the mass m in θ and ϕ and the dynamical problem remains exactly the same.

This spherical symmetry buys us a conservation law: conservation of angular momentum.
Consider the angular momentum of the mass m,

L⃗ = x⃗×mv⃗ .

Taking the time derivative,

dL⃗

dt
= v⃗ ×mv⃗ + x⃗×ma⃗ = 0 + x⃗× F⃗ .

The first term in the cross product is zero since a vector cross itself is zero (they are parallel).
But for the case of the spherically symmetric potential, the second term is also zero, since the
gravitational force F⃗ is parallel to x⃗; the force points in the same direction as the position
vector. Therefore,

dL⃗

dt
= 0 .

We can immediately integrate this equation to obtain that L⃗ is some constant vector. In other
words, angular momentum is a constant of motion — a conserved quantity — in the presence
of a spherically symmetric potential. The angular momentum of any particle in the presence of
such a potential cannot change without the action of some non-spherically symmetric external
force.

Exercise 1.1

Suppose a single particle of mass m is in a 2d potential V (r) that is independent of the

angle θ. Use the fact that ∂V (r)
∂θ = 0 to show that the z-component of angular momentum,

Lz = (r⃗ × p⃗)z, is time-independent. (Note: you will need to use the equations of motion.)

The general statement is that symmetries lead to conserved quantities. Every conservation
law that you have every come across — conservation of momentum, energy, electric charge,
etc. — is the consequence of a symmetry underlying the dynamical equations of motion. This
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is formalized in Emmy Noether’s theorem, which we will discuss later in this course. More
generally, the quantum mechanical notion of a particle and its charge — from the electric
charge of an electron to the color charge of quarks — arises from the fact that the underlying
equations that describe them can be cast in the language of symmetries. Nature organizes itself
using the language of symmetries.

(3) Using symmetry to simplify problems Practically speaking, symmetry is an ex-
tremely useful tool for simplifying calculations. If a system has some symmetry, then the
equations can typically be greatly simplified by choosing variables that are best adapted to
these symmetries. For example, perhaps you remember studying the radial wave equation for
an electron in the hydrogen atom in Quantum Mechanics. The radial wave equation, written
in spherical coordinates, is significantly simpler than studying the 3d Schrödinger equation in
Cartesian coordinates, precisely because the Coulomb potential has a spherical symmetry.

A simple functional example is using the symmetry (or anti-symmetry) of an integrand
to simplify the evaluation of an integral. The integral of an anti-symmetric function over a
symmetric domain of integration is always zero; for instance,∫ b

−b
sinx dx =

∫ 0

−b
sinx dx+

∫ b

0
sinx dx = −

∫ −b

0
sinx dx+

∫ b

0
sinx dx

= −
∫ +b

0
sin(−x) (−dx) +

∫ b

0
sinx dx = −

∫ b

0
sinx dx+

∫ b

0
sinx dx = 0

where in the second line we changed variables x → −x, and used sin(−x) = − sinx. On the
other hand, the integral of a symmetric function over a symmetric domain of integration can
be simplified to twice the integration over half of its domain; e.g.

∫ b
−b cosx dx = 2

∫ b
0 cosx dx.

Another useful application of this idea is to consider systems that are close to symmetric.
If one assumes that a system has more symmetry than it actually has, so that is has an ap-
proximate symmetry, then the equations simplify, and the problem might become solvable.
If it’s a good approximation, then we can get a good sense for how the messier, real system
would behave.1 Often, methods can then be developed that perturb around the symmetric so-
lution in order to capture the leading order corrections. In general, it is interesting to consider
symmetries of nature that are both exact and approximate.

(4) Symmetry and classification Furthermore, symmetry is an indispensable principle for
distinguishing or characterizing the phases of physical systems. This arises from characterizing
when underlying symmetries are either preserved or broken by the state of a system. This
phenomenon is called spontaneous symmetry breaking.

The idea is as follows. The laws of physics are thought to be the same everywhere in space
and at all times. However, we know just by looking around us that the universe decidedly does

1 This notion is captured by the hyperbolic idea of the spherical cow.
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not look the same everywhere or in every direction. Given the high degree of symmetry obeyed
by the equations describing the universe, why is it that the observed structure of the universe
lacks symmetry?

The answer is that just because the equations of motion obey some symmetry, the physical
system itself (i.e. the solutions to the equations of motion) does not need to obey that symmetry.
This is exemplified by the following exercise, taken from Kunstatter-Das.

Exercise 1.2

4 towns (A,B,C,D) are located on the 4 corners of a square with sides of length a km.
An engineer is called in to design a road that connects all four towns at minimal cost.

The simplest possibility is to join the towns directly along the perimeter of the square,
so that the total length of the road is 4a. This respects the underlying symmetry of the
problem, which is invariant under 90◦ rotations, but results in a road of length 4a. It turns
out that there are 2 optimal options (pictured below) that respect rotations by 180◦, but
break rotations by 90◦. Calculate the length of the road for each of these options.

In the exercise, the two optimal options have the same shortest length of road, but break
the 180◦ rotational symmetry of the underlying system.

A physics example of this phenomenon is the example of Ising spins on a lattice, which
is a statistical model for ferromagnetic behavior. The underlying spin system has a reflection
symmetry upon flipping all spins at the same time — such an operation does not change the
energy or equations of motion of the system. At low temperatures, the ground state energy of
the system is minimized by the configuration in which all spins are aligned in the same direction,
either up or down. Treating the spins as little magnetic moments, this means that the ground
state has a net magnetization which is either pointed up (if all the spins are aligned upwards) or
down (if all the spins are aligned downwards). The fact that at low temperatures the underlying
reflection symmetry is broken by the ground state (since nature chooses either the spins to be
pointed up or down) is an example of spontaneous symmetry breaking. In fact, this symmetry
breaking pattern is the distinguishing feature of the low temperature ferromagnetic phase. This
classification of phases of matter by their symmetry breaking patterns is known as the Landau
paradigm of phase transitions, and plays a significant role in the study of condensed matter and
high energy physics.
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1.3 The mathematical structure of symmetries

The mathematical structure that underlies the study of symmetries is known as Group The-
ory, and in the beginning of this course we will spend some time studying it. Formalizing /
quantifying the nature of symmetry using the language of group theory will allow us to apply
our study in many different examples in physics. With this formalization, we will be able to
make precise many of the imprecise statements we’ve made throughout this introduction.

The connection between symmetry and mathematics is so important that often, a “Symme-
try in Physics” course is taught as basically a “Group Theory for Physicists” course. However,
this is decidedly not the goal of this course. While we will need to cover a fair bit of group
theory in order to discuss symmetries in various contexts, this is truly meant to be a physics
course that involves some math, not a math course that involves some physics, geared towards
physics undergraduates. We will always stay grounded in physical examples, and not cover the
mathematics with anywhere near the rigor that a traditional “Symmetry in Physics” course (or
especially a true math course) might cover. For this reason, this course is forging somewhat
new ground — I do not know of an undergraduate course that covers this material in this way.
(If you do... please tell me!)

——— End Lecture 1.

2 The Language of Symmetry: Group Theory

Possibly helpful resources:

• [MOST RECOMMENDED:] A First Course on Symmetry, Special Relativity,
and Quantum Mechanics by Kunstatter and Das, Chapter 3 sections 3.1-3.4 for the
basics on group theory.

• A First Course on Symmetry, Special Relativity, and Quantum Mechanics also con-
tains a nice overview of vector calculus, linear transformations, and matrices in Chap-
ter 4, sections 4.1-4.4. This will be helpful later in this section, and in the next section,
and is good to review if you are rusty on linear algebra. (We will only need the very
basics here.)

• Professor Eugene Lim at King’s College London has some excellent lecture notes on
Symmetry in Physics, focusing mostly on aspects of group theory, available at this
link. I recommend especially sections 1 and 3. (Although note, his notes tend to be
more mathematical than we will need.)

• Section 1 of Professor John McGreevy’s Symmetry in Physics Lecture Notes from
UCSD are quite good—available at this link. (Although, these notes also tend to be
more mathematical than we will need.)

2.1 Symmetries as operations: geometric examples

To get started, let us return to the geometric examples we began with in the introduction.
This will be helpful to establish some notation, and get a sense for how symmetry groups work,
before we get into any formal definitions.
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Example 1: Symmetries of an equilateral triangle For a first concrete example, consider
an equilateral triangle. We will label the three corners by A,B,C as in Figure 2. What are
the symmetries of the equilateral triangle? (Specifically, in this context we mean: what are the
rigid, distance-preserving motions of the plane that maps the triangle to itself?)

For instance, intuitively if we rotate the equilateral triangle of 120◦, the triangle remains the
same. By “the same” we mean that if we drop the labels A,B,C, then you wouldn’t be able
to tell whether or not the triangle has been rotated. In such a case, we say that the triangle
is invariant under such a rotation. This rotation is an example of an operation that we can
perform on the triangle.

We can label the various symmetry operations of the equilateral triangle as follows:

• Doing nothing: this counts as a symmetry operation! It’s called the identity operation,
and for now we will denote it by the letter I. So by I, we mean act on the equilateral
triangle by the symmetry operation I, which does nothing.

• Reflection about the vertical axis (through vertex A in the figure): Sv. Again, by Sv we
mean act on the equilateral triangle by the symmetry operation Sv, which reflects it about
the axis which goes through the vertex A.

• Reflection about the diagonal axis that goes through the left vertex (through vertex B in
the figure): Sl

• Reflection about the diagonal axis that goes through the right vertex (through vertex C
in the figure): Sr

• Rotation by 120◦ counterclockwise (taking A→ B, B → C, C → A in the figure): R

• Rotation by 240◦ counterclockwise: since this operation is clearly achieved by two subse-
quent rotations by 120◦, we’ll denote it by R · R = R2. By this notation, we mean act
on the equilateral triangle by the symmetry operation R, and then subsequently act again
by another symmetry operation R, which composed together results in a total rotation by
240◦. Note that rotation by a subsequent 120◦ (so by a total of 360◦) gets us back to the
original configuration, so is the same thing as the identity operation and not distinct.

Having gone through all of the possible reflectional and rotational symmetries of the equi-
lateral triangle, are we missing any? To check explicitly, we should take the set of distinct
operations we have identified so far,

{I, Sv, Sl, Sr, R,R2} (2.1)

and verify whether composing any of these together yields a new symmetry operation. For
example, let’s first rotate by 120◦, and then reflect through the vertical axis Sv. We’ll denote
the composition of these two actions by Sv ·R, where our notation is that we act from right-to-
left: first act by the rotation R, and then by the reflection Sv. This “backwards” right-to-left
rather than left-to-right notation common in math is used since we imagine the action as being
to the right on some object (in this case the triangle); you should have in mind

Sv ·R (△) ⇒ first R(△) , then Sv(R(△))

We can check that the result of this series of operations yields the same result as just the
operation Sl, reflecting through the bottom left vertex; in other words,

Sv ·R = Sl
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Figure 3: Demonstrating that Sv ·R = Sl.

and so this is not a distinct symmetry operation. In fact, you can check that any two com-
positions of the 6 distinct symmetry operations listed in (2.1) does not yield a new symmetry
operation, so we have indeed captured everything.

Be careful, since the order in which we apply the operations matters! Applying first R and
then Sv is not the same as applying first Sv and then R: in the latter case, we obtain

R · Sv = Sr

In other words, the operations R and Sv do not commute with one another.

Exercise 2.1

Verify that we have correctly identified the 6 distinct symmetry operations of an equilateral
triangle by filling out the following table of compositions:

a · b I R R2 Sv Sr Sl

I

R Sr
R2

Sv Sl
Sr
Sl

In this table (called a Cayley table), the rows refer to the elements a, and the columns to
elements b, and the table entries are a · b (so, first act with the column element b, and then
act with the row element a). For example, the entries Sv ·R = Sl and R · Sv = Sr that we
have already checked have been filled in. You should find that every entry of this table is
one of the six elements (2.1).

You will notice that for every symmetry operation, there is another symmetry operation
that undoes it. We call this the operation’s inverse. The operation composed with its inverse
gives back just the identity (i.e., does nothing). For example, the inverse of a reflection is to
just do the same reflection back — the mirror image of a mirror image is the original image. In
particular, the inverse of Sv is Sv; the inverse of Sl is Sl, and the inverse of Sr is Sr. This is
because composing Sv · Sv = I, Sl · Sl = I, Sr · Sr = I.
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Exercise 2.2

Find each of the inverses of the 6 operations {I, Sv, Sl, Sr, R,R2} for the equilateral triangle.
In other words, for each of the operationsO, which operator satisfiesO·(which operation) =
I? Your list should only be composed of elements of {I, Sv, Sl, Sr, R,R2}.

The NH3 (ammonia) molecule is an example of an object that appears in nature whose
symmetry operations provide a realization of the symmetry group of the equilateral triangle.
The three H atoms form an equilateral triangle with the N atom lying on the symmetry axis
that passes through the center of the triangle.

Example 2: Symmetries of a square Let us go through the same exercise for the symme-
tries of a square. The possible symmetry operations are as follows:

• Doing nothing: I.

• Rotation by 90 degrees counter-clockwise. Calling this transformation R, this generates
3 distinct symmetry transformations: R, R · R = R2 (rotation by 180 degrees counter-
clockwise), R ·R ·R = R3 (rotation by 270 degrees counter-clockwise).

• There are two symmetry transformations corresponding to reflection across each of the
vertical and horizontal axes. Call these S↔ (mirror reflection left-to-right across the
vertical axis) and S↕ (mirror reflection about the horizontal axis). Doing these twice just
returns you to the original configuration, so S2

↕ and S2
↔ are not distinct transformations.

• There are additionally two reflections across each of the diagonal axes, from top left to
bottom right (call it Sr), and from top right to bottom left (call it Sl).

In total, we have described the following set of 8 distinct transformations of the square:

{I,R,R2, R3, S↔, S↕, Sl, Sr} (2.2)

You can verify for yourself that these are all the possible unique symmetry transformations.

Exercise 2.3

(a) Show that every element of the set (2.2) can actually be written as some composition
of the following two actions: R, and S↔. These are called the generators of the
symmetry.

(b) Show that first acting with S↔ and then with R is not the same thing as first acting
with R and then with S↔. Therefore, these transformations do not commute with
one another (R · S↔ ̸= S↔ ·R).

(c) What is the inverse of S↔? What about the inverse of R?
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Example 3: Symmetries of a circle The previous examples we considered were examples
of discrete symmetries: all of the transformations of the objects that described symmetries
were indexed by discrete labels. (Reflection about an axis, which I can do only once or twice;
rotation about a discrete number of units, in multiples of 120◦ for the equilateral triangle, versus
in multiples of 90 for the square.)

This is different from a symmetry which is indexed by a continuous label, called a con-
tinuous symmetry. For example, consider the symmetries of a circle. A circle is invariant
under rotations by infinitesimally small angles ϕ, as well as reflections about any axis through
the origin. Let’s focus on the rotations: these rotations can be labeled as R(ϕ), where ϕ is a
continuous label for this set of symmetries, since it can be any real number. Without loss of
generality, we can restrict ϕ to be some real number between 0 and 2π, since after rotation by
2π we get back to the same exact configuration we started with (the same thing as rotating by
zero degrees) — in other words,

R(ϕ+ 2π) ≃ R(ϕ) . (2.3)

A bit more formally, we can describe the symmetries of a circle by labeling the coordinates
of a given point on the circle by its polar coordinates, the angle θ and radius r. In complex
coordinates, this point is labeled by z = reiθ, or in real Cartesian coordinates, we would label
(x = r cos θ, y = r sin θ). For simplicity, let’s consider the unit circle, with radius r = 1. Then,
a point is labeled uniquely by the real angle 0 ≤ θ < 2π.

A symmetry transformation that rotates the circle by an angle ϕ, R(ϕ), takes θ → θ + ϕ.
Composing two of these symmetry operations, say first by rotating by an angle ϕ1 and then by
an angle ϕ2, is accomplished by acting on the coordinates as:

R(ϕ2) ·R(ϕ1) : eiθ → ei(θ+ϕ1) → ei(θ+ϕ1+ϕ2)

where of course, ei(a+b) = eiaeib. We can rotate all the way up to ϕ = 2π before we start double
counting, so we should identify rotations ϕ→ ϕ+ 2π as being equivalent. In other words,

ei(θ+2π) = eiθ since e2πi = 1 .

Then, the equivalence relation (2.3) is naturally imposed.

You’ll notice that unlike the previous two examples, which had 6 and 8 distinct symmetry
operations, this example has an infinite number of symmetry transformations, since there are an
infinite number of real numbers between 0 and 2π. (This is because ϕ that labels the symmetry
transformation can be infinitesimally tiny!) This demonstrates the distinction between a finite
symmetry and an infinite symmetry. The symmetry group of a circle is both continuous
(labeled by a continuous parameter) and infinite (consists of an infinite number of distinct
operations).2

——— End Lecture 2.

2.2 An introduction to finite groups

Now that we have some familiarity with some simple symmetry actions, let us more formally
define what is meant by a symmetry group. Group theory is the branch of mathematics that
defines abstract relationships among sets of elements in terms of operators among elements of
a group.

2 Note that the restriction (2.3) does not change the fact that the symmetry is infinite, since there are still
an infinite number of real numbers between 0 and 2π.
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Definition 2.1. A group G is a set of elements {g} with a multiplication law (denoted by ·)
that maps two group elements to a third group element.3 The multiplication law has the
following properties:

1. Closure: The product (composition) of any two group elements yields another member
of the set. In particular, if g1 and g2 are elements of the group G, the product g1 · g2 = g3
yields an element g3 which is also a member of G. This is called the closure property
of the group, since the group “closes” under its multiplication law. The mathematical
symbol for “is a member of a set” is ∈, so we can write this rule as

g1 · g2 = g3 , for g1, g2, g3 ∈ G

2. Associativity: The product is associative: (g1 · g2) · g3 = g1 · (g2 · g3).

3. Identity: There is a an identity element, which we will call e, which satisfies: e · g =
g · e = g for all g ∈ G. This is the “do nothing” operation.

4. Inverse: Every element g has a unique inverse element g−1, such that g−1 · g = e, and
g · g−1 = e.

Any set of elements with a composition/multiplication rule which obeys all of the above
properties is called a group. An example of a group is the group of symmetries of the equilateral
triangle, which we have already discussed. This symmetry group is called the dihedral group
D3. In general, the dihedral group Dn is the group of symmetries of a regular polygon with n
sides. D3 is a symmetry group consisting of 6 distinct elements, which in the previous section
we called,

g = {I,R,R2, Sv, Sl, Sr} (2.4)

In Exercise 2.2 you explored the composition of these elements, and should have found the
following multiplication table:

a · b I R R2 Sv Sr Sl

I I R R2 Sv Sr Sl
R R R2 I Sr Sl Sv
R2 R2 I R Sl Sv Sr
Sv Sv Sl Sr I R2 R

Sr Sr Sv Sl R I R2

Sl Sl Sr Sv R2 R I

Running down the list of group properties, we can verify that each is true for D3:

1. Closure: Composing any two of the elements (2.4) leads to a third element in this list.
This is precisely what you were asked to verify in Exercise 2.1, when you showed that
every member of the Cayley table can be written as one of these 6 elements.

2. Associativity: This property can be evaluated with the multiplication table. For exam-
ple, consider associativity of the product:

Sv · (Sr · Sl)
?
= (Sv · Sr) · Sl

3 We will interchangebly use the terms group multiplication law and group composition law. Here we understand
“multiplication” to be a composition rule that satisfies properties (1)-(4), not literal multiplication of numbers!
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On the left-hand-side of the equals sign, we are first asked to evaluate Sr · Sl = R2, and
then to evaluate Sv · R2 = Sr. On the right-hand-side, we are first asked to evaluate
Sv · Sr = R2, and then to evaluate R2 · Sl = Sr. Either way, we get the same answer Sr,
so this product is associative. One can verify that this associativity property holds true
for all other possible three-way groupings of the elements (2.4).

3. Identity: Previously we called the identity element e = I, and explicitly verified via the
table that I · (any element g) = g, and (any element g) · I = g. This is reflected by the
first row and first column of the table.

4. Inverse: The inverse of an element is the unique element that multiplies it to give the
identity—in other words, the action that undoes the previous action. You showed in
Exercise 2.2 that each element (2.4) has an inverse which is also a member of (2.4), and
since I only appears once in each row and column, the inverse is unique.

Some further remarks are in order:

• The order of operations might matter! It is not necessarily true that g1 · g2 = g2 · g1. (In
particular, associativity does not imply commutivity.) If all products commute, so that
ordering doesn’t matter, the group is called abelian:

G abelian: [g1, g2] = 0 for all g1, g2 ∈ G

Otherwise, it is called non-abelian. You’ve already seen that the triangle group D3 is
non-abelian, since (for example) Sv · R ̸= R · Sv. It turns out that D3 is the smallest
non-abelian group, in the sense that it is the non-abelian group with the smallest number
of distinct elements.

• Another definition: the number of distinct elements of the group is called the order of
the group. The order might be finite, with some finite number of elements (like D3, which
has order 6), or infinite (like the symmetry group of the circle). Furthermore, the group
elements might be labeled by discrete variables (like integers), or continuous variables
(like real numbers, as we saw in the example of the circle). D3 is an example of a finite,
discrete, non-abelian group.

• A finite group can be completely specified by its multiplication table, called a Cayley
table. We have already seen an example of a Cayley table for the symmetry group of the
equilateral triangle. This Cayley table actually contains all of the information about D3.

The other example we considered in the previous section was the symmetry group of the
square. This is a finite, discrete, non-abelian group of order 8, called the dihedral group D4.
Recall that in that case, we called attention to the fact that while the set of 8 operations
(2.2) are the complete set of distinct symmetry operations, some of them can actually be
written as compositions as other group elements. In particular, in Exercise 2.3 you should
have found that every element can actually be written as the composition of only two elements:
R,S↔. In general, we can ask the question: what is the minimal number of operators needed
to generate the entire set of distinct group elements? These minimal subset of operators are
called the generators. For example, we would say that “the symmetry group D4 is generated
by {R,S↔},” since every other element can be represented by these two. As we will see in
examples later, group generators play a crucial role in understanding symmetries in physics.
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Exercise 2.4

(a) For a finite symmetry group, what property must the Cayley table satisfy if the group
is abelian?

(b) The Sudoku rule: Show that every group element must appear exactly once in each
row and in each column of the Cayley table. In other words, show that g1 ·g3 = g2 ·g3
implies g1 = g2. (You will only need to use the 4 group properties to show this.)

Example: the integers under addition To contrast with the finite, geometric exam-
ples we have studied thus far in this subsection, let’s consider a different example to round
out this discussion. The set of all integers {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞} form a group
under the composition law of addition. In particular, we mean that the set of all integers
{−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞} (often denoted by Z) is a group if we consider the group mul-
tiplication law to correspond to the operation of adding integers:

g2 · g2 ≡ g1 + g2 for g1, g2 ∈ Z

(The symbol ≡ means defined as.) We can verify this statement by running down the list of
four group properties. Closure clearly holds, since adding two integers always gives a third
integer. Furthermore, addition is clearly associative: (g1 + g2) + g3 = g1 + (g2 + g3). The
identity element is identified with 0, and indeed g + 0 = 0 + g = g for g any integer. And
furthermore, the inverse of every integer is its negative, which is still a member of Z: g−1 = −g,
since g + (−g) = (−g) + g = 0. This group is:

• abelian, since addition is always commutative, g1 + g2 = g2 + g1 for any two integers;

• discrete, since it is labeled by discrete integers;

• infinite, since there are an infinite number of integers.

Exercise 2.5

(a) Fill out a portion of the Cayley table for the integers under addition for the subset
g = {−2,−1, 0, 1, 2, 3}. (This will be a 6 × 6 table, which is some finite portion of
the infinite Cayley table for this infinite group.)

(b) Is the set of integers a group under the composition law of multiplication, rather
than addition? Why or why not?

Now that we have a feel for what a group is, in subsequent sections we will explore a variety
of other examples of groups that exemplify various group properties.

2.3 The cyclic group Z2 and a first pass at subgroups, isomorphisms, and
representations

Let’s go back to the symmetry group of the equilateral triangle, D3. We saw that reflection
across a symmetry axis — for example, Sv implementing reflection across the vertical axis —
is a symmetry operation which is its own inverse,

Sv · Sv = I .
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In fact, if we restrict to just the two elements {I, Sv}, these two elements alone form a group
of order 2, which we’ll call Z2. We can verify that all 4 group properties hold for Z2:

1. The group Z2 closes: filling out the multiplication table,

a · b I Sv

I I Sv
Sv Sv I

so that the composition of the two elements in any order always gives back one of those
same two group elements.

2. The product is associative. (If this was true for the larger group D3, then it’s certainly
true for this order 2 subgroup.)

3. The identity e = I is in Z2.

4. The inverses of I and Sv are both also in Z2, since the inverse of I is I itself, and the
inverse of Sv is Sv itself.

Z2 is an example of a subgroup ofD3: a subset of a group that itself satisfies all the conditions
to be its own group. A little more formally:

Definition 2.2. Let G be a group. A subset H of G is a subgroup of G if:4

• H closes: For every h1, h2 ∈ H, the product h1 · h2 ∈ H. (Of course, since the elements
of H are also elements of G, h1, h2 are also elements of G.)

• The identity of G is in H.

• If h is in H, then its inverse h−1 is also in H.

We have seen that there is an order 2 subgroup Z2 of the order 6 group D3 which corresponds
to reflections about the vertical symmetry axis. This smaller group Z2 is generated by just the
single element Sv, since the identity I can be written in terms of Sv as Sv · Sv = I, whereas
the larger group D3 has two generators. It must be stressed, however, that this is just one
manifestation of the abstract group that we have called Z2. First of all, D3 has other Z2

subgroups: for example, the subgroup consisting of {I, Sl} satisfies the exact same multiplication
table as {I, Sv}, and so provides another manifestation of the group Z2.

Furthermore, while in these examples we have identified the two Z2 elements with operations
that act on an equilateral triangle, the triangle is not necessary to study/describe the underlying
group Z2. We can drop the triangle entirely, and just study the properties of 2 elements (call
them e and b) that possess the algebraic properties described above,

Z2 = {e, b} , e · e = b · b = e , e · b = b · e = b

Before we were thinking of e = I as the operation that does nothing to the equilateral triangle,
and b = Sv as the operation that reflects the equilateral triangle across its vertical axis, but we
don’t need to mention the equilateral triangle at all.

4 As an aside.. any group has two trivial subgroups: itself (of course), and the trivial subgroup consisting
of nothing but the identity of G, {e}. Typically when we discuss subgroups of a group, we exclude these two
obvious ones.
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Exercise 2.6

Show that the composition law e · b = b · e for the group Z2 can be obtained from the
relation b · b = e satisfied by the generator b.

This abstraction is a crucial part of the study of group theory, and the reason why group
theory is so powerful in describing symmetries! Once we know all the properties of a group, then
any physical system that possesses the same symmetries will obey exactly the same underlying
group-theoretic properties. For instance, it turns out that any finite symmetry group of order
2 is equivalent to the group Z2, since Z2 is the unique group of order 2. Therefore, if I find
an order 2 finite group in my system, I know that it is Z2. For this reason, despite being the
simplest possible nontrivial group, Z2 is in fact one of the most important groups in physics.
Consider the following example.

Another realization of Z2 Suppose we have a function of space ψ(x), for −∞ < x < ∞.
(For example, you might have in mind the wavefunction in a 1d quantum mechanical system.)
Consider the operation of sending x → −x, i.e. flipping the argument of ψ(x). This operation
is called parity, so we will denote it with a letter P :

P : ψ(x) → ψ(−x) ↔ Pψ(x) = ψ(−x)

By the latter notation, we mean “the operator P acting on ψ(x) yields ψ(−x).” Consider also
the identity operation of “doing nothing” to the wavefunction,

e : ψ(x) → ψ(x) ↔ eψ(x) = ψ(x)

Clearly, acting on ψ(x) twice with the parity operation just gives back the original function:

P · Pψ(x) = Pψ(−x) = ψ(x)

These two operators {e, P} then form a group of order 2; dropping the ψ(x), we have just
shown that these two elements satisfy the multiplication laws eP = Pe = P , and e2 = P 2 = e.
We recognize these as precisely the group multiplication laws of the cyclic group Z2. Parity
(defined in higher dimensions as the reflection of the spatial coordinates about the origin of
space, x⃗→ −x⃗) is an example of a Z2 group satisfied by many quantum systems.5

The notion of two groups being the “same” is formalized by the idea of isomorphism. Intu-
itively, even though two groups G and G′ might have elements that look different, they are said
to be the same, or isomorphic, if their composition laws have the same structure. Formally,

Definition 2.3. Two groups G and G′ are said to be isomorphic, G ∼= G′, if there exists a
map between their group elements that preserves the group multiplication law, and which is
bijective (one-to-one and onto).

We have just seen that the cyclic group Z2 is isomorphic to parity symmetry.

——— End Lecture 3.

5 Not just quantum systems! Newton’s second law is also invariant under parity! Newton’s second law is
of the form F⃗ = ma⃗, so that under the transformation x⃗ → −x⃗ both vectors on the left and right side of this
equation get the same minus sign.
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A historical aside on parity symmetry: Until 1956 it was assumed that the interactions of the
fundamental particles were invariant under parity. Based on experiments involving subatomic
particles called kaons, in 1956 physicists Tsung-Dao Lee and Chen Ning Yang proposed that
parity does not apply to the weak force, the force responsible for radioactive decay of subatomic
particles. This prediction was quickly verified by Chien-Shiung Wu in 1957, earning Lee and
Yang the Nobel Prize in physics.

Action of operators on vector spaces We have just seen two realizations of the group
Z2: one in which the group elements act on an equilateral triangle, and one in which the group
elements act on a function of space. In either case we had in mind the following kind of action:

operator × object = result (2.5)

where the group element (acting as an “operator”) acted on an object (the a point on the
triangle, or the argument of the function), which did something to the object (yielding the
“result”). More generally, it is often extremely useful to mathematically describe the “object”
without referencing any specific concrete realization of the symmetry; for example, without
referencing the triangle. How to do this?

In these physics, we will often be interested in the case where the object lives in a vector
space. To motivate this idea, let’s go back to the equilateral triangle. Any point (x, y) on the
triangle can be described by a vector in the x-y plane pointed from the origin to (x, y),

v⃗ = xx̂+ yŷ

where x̂ and ŷ are the unit vectors pointing in the x and y directions, respectively. Choosing
to place the origin of our coordinate system at the center of the triangle, we can label the three
triangle vertices as being at points (x, y) (or equivalently, vectors v⃗) equal to

A = (0, 1) ↔ A⃗ = ŷ ,

B = (−
√
3

2
,−1

2
) ↔ B⃗ = −

√
3

2
x̂− 1

2
ŷ ,

C = (

√
3

2
,−1

2
) ↔ C⃗ =

√
3

2
x̂− 1

2
ŷ

Actually, it will be convenient to introduce a matrix notation, where we represent the unit
vectors as unit column vectors,

x̂ =

(
1
0

)
, ŷ =

(
0
1

)
These two vectors form a basis of a 2-dimensional vector space. A general vector v⃗ pointing
from the origin to the point (x, y) is given in this basis by the column vector

v⃗ = x

(
1
0

)
+ y

(
0
1

)
=

(
x
y

)
For example, in this matrix notation the three vertices occur at locations

A⃗ =

(
0
1

)
, B⃗ =

(
−
√
3/2

−1/2

)
, C⃗ =

( √
3/2

−1/2

)
So far so good.
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Next, we would like to represent the symmetry operators of D3 in such a way that when
they act on a vector (describing a point on the triangle), the result is another vector (describing
another point on the triangle), according to how that operation transforms the triangle. It is
clear that the symbol × in (2.5) should then denote matrix multiplication. In order to for the
“result” of (2.5) to be a valid vector, the operators (call them D) must be 2× 2 matrices of the
following form,

operator D =

(
a b
c d

)
⇒ D × v⃗ =

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
= v⃗′

Here a, b, c, d are real numbers.

Now that we have represented the object (the space in which the 2d equilateral triangle
lives) in terms of 2-component vectors, and the symmetry operations (group elements) by 2× 2
matrices, we can figure out: what are the matrices that represent the D3 group elements? For
simplicity, let’s start with the Z2 subgroup {I, Sv}. The identity element, e = I should take
any vector v⃗ back to itself, so of course should be represented by the identity matrix:

D(I) =

(
1 0
0 1

)
We are using a somewhat pedantic notation where D(I) means “the matrix representing the
group element I”, although later we will often just drop the “D(I)” and write I = . . . . Then,
you can check explicitly that D(I)v⃗ = v⃗:

D(I)v⃗ =

(
1 0
0 1

)(
x
y

)
=

(
x
y

)
= v⃗ ✓

What about the element Sv that reflects about the central vertical axis? In our vector space
this is a reflection about the y-axis, which takes all x-coordinates to minus themselves, and
leaves the y-coordinates untouched. This is accomplished with:

D(Sv) =

(
−1 0
0 1

)
: D(Sv)v⃗ =

(
−1 0
0 1

)(
x
y

)
=

(
−x
y

)
In particular, we can verify that acting with Sv on each of the 3 vertices yields,

D(Sv)A⃗ = A⃗ , D(Sv)B⃗ = C⃗ , D(Sv)C⃗ = B⃗

which flips the B and C vertices, exactly as the reflection Sv should.

With this matrix representation of the group elements, the group composition law (·) is also
described by matrix multiplication. We can straightforwardly verify that we reproduce the Z2

Cayley table using matrix multiplication:

I2 = I ↔
(

1 0
0 1

)(
1 0
0 1

)
=

(
1 0
0 1

)
✓

Sv · Sv = I ↔
(

−1 0
0 1

)(
−1 0
0 1

)
=

(
1 0
0 1

)
✓

I · Sv = Sv ↔
(

1 0
0 1

)(
−1 0
0 1

)
=

(
−1 0
0 1

)
✓

Sv · I = Sv ↔
(

−1 0
0 1

)(
1 0
0 1

)
=

(
−1 0
0 1

)
✓

(2.6)
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To summarize: we have accomplished representing the Z2 group elements by matrices acting
on a 2-dimensional (real) vector space. These two matrices D(I) and D(Sv) (along with the
2d vector space represented by the unit column vectors x̂, ŷ) form what is called a group
representation of Z2. Of course, the vertices of the triangle clearly belong to this vector
space, but they are just a subset of the infinitely many points in the vector space; the matrix
operators we have constructed will act on any vector in this vector space.

This idea of group representations is extremely useful; arguably representation theory is
the main point of contact between group theory and quantum physics (where the vector space
in question is the Hilbert space of the physical system). Furthermore, by studying group
representations, we can study groups using linear algebra, which allows for all the nice structure
of linear algebra to be brought to bear in the study of symmetries. We are not going to delve
into representation theory in these notes (this is a whole course in itself!), but we will be using
matrix representations to describe symmetry groups in a variety of contexts.

Exercise 2.7

(a) Represent all 6 elements of D3 in a 2× 2 matrix representation.

(b) Identify three other subgroups of D3 besides the Z2 generated by Sv.

Yet another realization of Z2 In general, group representations are not unique — there
might be several or many different ways to represent the same group elements. And of course,
we have already emphasize that the same group might show up in many different contexts.
To really drive home these points, let’s consider a completely different realization of the cyclic
group Z2. (As we said, this is a very important group!)

In computing, information is encoded by bits, which are logical states with one of two
possible values. We can represent these two possible values by ↑ (or true, or 1) and ↓ (or false,
or 0). The “NOT” operator (call it P ) flips ↑ to ↓ and ↓ to ↑, i.e.

P ↑=↓ , P ↓=↑

We of course also have the “do-nothing”, or identity, operator, which leaves a bit as it is:

e ↓=↓ , e ↑=↑

Flipping a bit twice gets you back to the original bit, P · P = e, and so P is its own inverse.
Associativity is also easily checked. So, the operators {P, e} form an order 2 group, which is
isomorphic to Z2.

A group representation of these actions can be formulated as follows. We can represent the
two possible states of the bit by the column vectors,

↑=
(

1
0

)
, ↓=

(
0
1

)
which span a 2d vector space. Then, the operators P and e can be represented by the following
2× 2 matrices,

D(P ) =

(
0 1
1 0

)
, D(e) =

(
1 0
0 1

)
(2.7)
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You can verify via matrix multiplication that indeed, D(P )2 = e, D(e)2 = e, and D(e)D(P ) =
D(P )D(e) = D(P ). The matrices (2.7) therefore form a group representation of Z2. However,
this is clearly a different representation than the one we formulated in (2.6) — there the analogue
of the element P was represented by a different 2× 2 matrix! — but nonetheless, this is a good
representation all the same. This example demonstrates the point that for any group there
may exist more than one group representation. In this case, there is more than one distinct
2-dimensional representation (meaning, representations by 2× 2 matrices).

——— End Lecture 4.

2.4 More finite examples: The cyclic group Zn and symmetric group Sn

Let us expand our study to groups of higher order. The order 2 group Z2 is a member of a
larger class of groups Zn called the cyclic group (also often denoted as Cn, although we will use
the notation Zn). The cyclic group is an order n group generated by a single element, which
we will call b. Its n total elements can be expressed by composing b with itself n times:

Zn = {b, b2, b3, . . . , bn−1, bn = e}

where we have denoted b · b by b2, b · b · b by b3, etc. (We emphasize again that the group
composition law (·) does not necessarily correspond to regular multiplication of the elements
— as we have seen in many examples already this will depend on how we represent the group
action!) For example, Z2 is generated by the single element b satisfying b2 = e, where in the
context of the equilateral triangle we called b = Sv, and in the context of parity we called b = P .

As you might have guessed, there are several equivalent realizations of the group Zn. We’ll
give two examples below.

(1) Integers modulo n under addition A presentation of the cyclic group which you might
have seen before is as follows. Let b and n be positive integers. The expression b mod n means
to “take the remainder when b is divided by n.” For example:

32 mod 5 = 2 since
32

5
= 6 +

2

5
↔ 32 = 5× 6 + 2

14 mod 8 = 6 since
14

8
= 1 +

6

8
↔ 14 = 1× 8 + 6

15 mod 3 = 0 since
15

3
= 5 +

0

3
↔ 15 = 5× 3 + 0

Much like the integers under addition form an (infinite) group, the integers modulo n under
addition form a (finite) group, where the composition law between two integers a, b is defined

a · b = (a+ b) mod n .

and the identity is e = 0. This group is often referred to as Zn.

For example, consider the integers modulo 2, Z2. Suppose we wish to form the Cayley table
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for a subset of the integers, −2,−1, 0, 1, 2, 3 for this group. For example, we can compute

“(−2) · (−2)” = (−2− 2) mod 2 = −4 mod 2 = 0

“(−2) · (−1)” = (−2− 1) mod 2 = −3 mod 2 = 1

“(−2) · 0” = (−2 + 0) mod 2 = −2 mod 2 = 0

“(−2) · 1” = (−2 + 1) mod 2 = −1 mod 2 = 1

“(−2) · 2” = (−2 + 2) mod 2 = 0 mod 2 = 0

“(−2) · 3” = (−2 + 3) mod 2 = 1 mod 2 = 1

and so on for the other rows of the table. (More explicitly, for instance −3 mod 2 is computed
by −3

2 = −2 + 1
2 , etc.) What you’ll find is that the answer is always either 0 or 1. In fact,

every integer modulo 2 is equivalent to either 0 or 1, so this group consists of only those two
elements. Said more precisely, the operation mod 2 defines an equivalence class on the integers
which equates every integer with either 0 or 1. For instance,

−2 mod 2 = 0 , −1 mod 2 = 1 , 0 mod 2 = 0

1 mod 2 = 1 , 2 mod 2 = 0 , 3 mod 2 = 1

and so on. The Cayley table for this order 2 group can be expressed as,

a · b =
(a+ b) mod 2

0 1

0 0 1

1 1 0

Clearly, this group can be considered as generated by the single element 1, since 1 · 1 = 0 (the
identity element). Having reproduced the Cayley table for Z2, we see that Z2

∼= Z2. For more
general n, the group Zn is isomorphic to the cyclic group Zn, Zn

∼= Zn.

Exercise 2.8

The group Z5 is order 5, and equivalent to the integers under addition modulo 5 (Z5). Fill
out the Cayley table for this group, using representative elements {0, 1, 2, 3, 4}. Show that
this group has 1 generator.

(2) The nth roots of unity Another presentation of the cyclic group Zn is to let the elements
b correspond to nth roots of unity, b = e2πi/n, with the group multiplication law corresponding
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to multiplication of these roots:

b = e2πi/n , b · b = e2πi/ne2πi/n = e4πi/n .

The example of n = 10 is shown in the figure. The roots of unity naturally satisfy bn = e, since

(e2πi/n)n = e2πi = 1 = e

while the other products fill out the group elements,

{e2πi/n , e4πi/n , . . . , e(n−1)2πi/n , 1}

Exercise 2.9

The set of complex numbers {1, a, a2} for a = e2πi/3 under multiplication form the cyclic
group Z3. Find a representation of this group in terms of 2×2 complex matrices. (In other
words, find three 2 × 2 matrices D(1), D(a), D(a2) that satisfy the group multiplication
table, D(a)2 = D(a2), D(a)3 = D(1), D(a)D(e) = D(e)D(a) = D(1), etc.)

The symmetric group Sn Suppose you are given n balls of different colors, and are asked
to put them into n separate boxes. How many possible ways can you do that? For example,
given 3 balls of different colors (red, blue, green), there are 6 possible permutations:

Box 1 Box 2 Box 3

R B G
R G B
B R G
B G R
G R B
G B R

In general, the set of all permutations of n objects forms a group Sn, called the symmetric
group. This is a group of order n!, since in general there are n! such permutations of n distinct
objects.

For example, consider the group S3. We may represent the action of all the possible per-
mutations of 3 objects by how such permutations act on the list of numbers (1 2 3). The n!
possibilities would take (1 2 3) to: (1 2 3) (doing nothing); (1 3 2); (2 1 3); (2 3 1); (3 2 1); (3 1 2).
A nice way to write these 6 symmetry operations is with the following notation,

P =

(
1 2 3
p1 p2 p3

)
≡ take 1 → p1, 2 → p2, 3 → p3

where p1, p2, p3 are some rearrangement of the numbers 1, 2, 3. Thus, we can write the inverse
of P as

P−1 =

(
p1 p2 p3
1 2 3

)
= take p1 → 1, p2 → 2, p3 → 3

so that successively applying P and then P−1 returns the numbers to their original configuration.
(This is NOT a matrix group representation, just a notation for labeling different permutations
of 3 numbers.)
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With this notation, the 6 possible permutations can be written as,

P0 =

(
1 2 3
1 2 3

)
, P1 =

(
1 2 3
2 3 1

)
, P2 =

(
1 2 3
3 1 2

)
P3 =

(
1 2 3
1 3 2

)
, P4 =

(
1 2 3
2 1 3

)
, P5 =

(
1 2 3
3 2 1

)
To obtain the permutation from applying two subsequent permutations, for example

P1 · P5 =

(
1 2 3
2 3 1

)(
1 2 3
3 2 1

)
(by which we mean first act with P5, and then with P3), we should rearrange the columns of
the left matrix so that the top row matches the lower row of the right matrix, and then reduce
to a matrix with the resulting bottom left row under the top right row,

P1 · P5 =

(
1 2 3
2 3 1

)(
1 2 3
3 2 1

)
=

(
3 2 1
1 3 2

)(
1 2 3
3 2 1

)
=

(
1 2 3
1 3 2

)
= P3

Try it out a couple of times and you’ll get the hang of it. Going through this exercise for all
the permutations, you should find the following table:

a · b P0 P1 P2 P3 P4 P5

P0 P0 P1 P2 P3 P4 P5

P1 P1 P2 P0 P4 P5 P3

P2 P2 P0 P1 P5 P3 P4

P3 P3 P5 P4 P0 P2 P1

P4 P4 P3 P5 P1 P0 P2

P5 P5 P4 P3 P2 P1 P0

Does this table look familiar? If I call

P0 = I , P1 = R , P2 = R2 , P3 = Sv , P4 = Sr , P5 = Sl

Then this is exactly the same table that we wrote previously for the dihedral group D3, the
symmetry group of the equilateral triangle (written below (2.4)). Indeed, we can understand
the elements of this group as the various permuted indices of the equilateral triangle labeled
(A = 1, B = 2, C = 3), and the group composition as the act of permuting the vertices – for
instance, P1 takes A→ B, B → C, C → A, indeed corresponding to a rotation of the triangle.
Since a finite group is defined by its multiplication table, these two groups – S3 and D3 – are
one and the same, and the group S3 is isomorphic to D3.

2.5 Rotations in 2d and 3d

A rotation is a linear transformation that leaves the lengths of vectors unchanged. For instance,
consider the group of rotations 0 ≤ θ < 2π about some axis in the 2d plane. You will recall
that around (2.3) we denoted these group elements by R(θ), which can be written as complex
phases; here let’s use the notation gθ to denote the group elements,

gθ = {eiθ , 0 ≤ θ < 2π}
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This is a continuous group, as it is labeled by a continuous real variable θ ∈ R. As you will also
recall, this is part of the symmetry group of the circle (which also contains the set of continuous
reflection symmetries).

Group multiplication corresponds to the multiplication of the phases, which adds the angles:

gθ1 · gθ2 = eiθ1eiθ2 = ei(θ1+θ2) = gθ1+θ2

This composition is also clearly commutative: eiθ1 · eiθ2 = eiθ2 · eiθ1 since θ1 + θ2 = θ2 + θ1, so
this is an abelian group. The identity element is just e0 = 1, and inverses are given by minus
the angle:

(gθ)
−1 = g−θ = g2π−θ ⇒ (gθ)

−1gθ = g2π−θ+θ = 1 ✓

(Recall that two angles θ and θ + 2π are equivalent, so in order to define the inverse angle in
the range [0, 2π] we should technically add the 2π.)

What about the representations of this group? We can define a 1-dimensional “vector”,
i.e. another complex number v = reiα for r and α real positive numbers, 0 ≤ r < ∞ and
0 ≤ α < 2π. Then, the action of the group elements gθ on complex numbers v is simply to add
θ to the angle α:

gθv = rei(α+θ)

In other words, it rotates v clockwise by the angle θ (as expected! We are just putting fancy
words to things you already know about rotations). This defines a 1-dimensional representation.

Of course, it is also clear that the lengths of vectors are kept invariant under rotations, since
pure complex phases always have length 1:

|gθv| =
√
(gθv)(gθv)∗ = r = |v| ✓

You might have seen another way to represent rotations in 2-dimensional space. Instead of
using complex variables, we can label the plane by real variables x and y. A rotation by angle
ϕ takes a vector (x, y) → (x′, y′) as,

x→ x cos θ − y sin θ , y → x sin θ + y cos θ

Such a transformation indeed preserves the length of the vector v⃗ = xx̂+ yŷ, since

|v′|2 = x′2 + y′2 = (x cos θ − y sin θ)2 + (x sin θ + y cos θ)2 = x2 + y2 = |v|2

This operation can be represented in matrix form by the following 2× 2 matrix,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(2.8)

which acts on a vector (x, y) as

Rθv⃗ =

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
——— End Lecture 5.
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For example, taking θ = 120◦ and 240◦ reproduces the 2-dimensional representations of R
and R2 in the group D3, as you should have found in Exercise 2.7.

We can again verify that two consecutive rotations by angles θ1 and θ2 yield another rotation
by angle θ1 + θ2; explicitly,

Rθ2 ·Rθ1 v⃗ =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)(
x cos θ1 − y sin θ1
x sin θ1 + y cos θ1

)
=

(
cos θ2(x cos θ1 − y sin θ1)− sin θ2(x sin θ1 + y cos θ1)
sin θ2(x cos θ1 − y sin θ1) + cos θ2(x sin θ1 + y cos θ1)

)
=

(
x cos(θ1 + θ2)− y sin(θ1 + θ2)
x sin(θ1 + θ2) + y cos(θ1 + θ2)

)
= Rθ1+θ2 v⃗

where we used the trig identities

cos θ1 cos θ2 − sin θ1 sin θ2 = cos(θ1 + θ2) , cos θ1 sin θ2 + sin θ1 cos θ2 = sin(θ1 + θ2) .

Of course, there is a clear map between these two different ways of representing the 2d
rotation group, since Re(eiθ) = cos θ and Im(eiθ) = sin θ,

eiθ →
(

cos θ = Re(eiθ) − sin θ = −Im(eiθ)
sin θ = Im(eiθ) cos θ = Re(eiθ)

)
. (2.9)

Rotations in 3d This discussion readily generalizes to three spatial dimensions. Consider the
set of rotations in 3d space, which rotate a vector x⃗ = (x, y, z) to another vector x⃗′ = (x′, y′, z′),

Rx⃗ = x⃗′

We can represent the group elements as 3× 3 matrices R, so that

R

 x
y
z

 =

 x′

y′

z′


A general 3d rotation matrix is obtained by composing rotations about each of the 3 axes. A
rotation by angle α around the x-axis (so, in the y-z plane), β around the y-axis (in the x-z
plane), and γ around the z-axis (in the x-y plane) is accomplished by appropriately embedding
the 2d rotation matrix (2.8) into a 3d matrix, as

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , Ry(β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 , Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1


A general 3d rotation R can be specified by these three angles of rotation, one about each axis,
and so is given by the composition of these three basis rotations,

R = Rz(γ)Ry(β)Rx(α)

=

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 1 0 0
0 cosα − sinα
0 sinα cosα

 .
(2.10)

This group is non-abelian – in 3d, the order of rotations matters!

An example of a discrete subgroup of the group of 3d rotations is to restrict ourselves to
the subgroup of rotations with angle π = 90◦. This is the group of rotational symmetries of
the cube, and has 24 elements, and is isomorphic to S4 (can you see why?). This subgroup is
also not abelian: for example, compare the result of successive 90◦ rotations about the ẑ and x̂
axes, versus the opposite ordering – the result is evidently not the same.
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2.6 Matrix groups

The cases we just discussed — of rotations in 2d (either in terms of the complex phases eiθ of
the 2×2 real matrices R(θ)) and rotations in 3d (via the 3×3 real matricec R) — are examples
of matrix groups. A matrix group is a set of square invertible matrices, with composition
given by matrix multiplication, that might satisfy additional constraints.

In particular, the realization of the rotation group as complex phases is the group U(1), which
is a special case of the matrix group U(n) of unitary n× n matrices with complex components
– i.e., the set of n × n matrices that satisfy U †U = UU † = I. In the case of n = 1, “1 × 1
unitary matrices” are just complex phases eiϕ. On the other hand, the realization in terms of
2 × 2 real matrices is a special case of the matrix group SO(n), consisting of n × n so-called
“special orthogonal” matrices (to be discussed below). The map we constructed between these
two groups in (2.9) shows that these two groups are isomorphic to each other,

U(1) ∼= SO(2) .

More generally, we can consider the set of n × n invertible matrices M , under matrix mul-
tiplication. This set of matrices form a group, which we can verify by checking the four group
properties:

1. Closure: If we multiply two n × n matrices, the output is another n × n matrix: M1 ·
M2 = M3. If M1 and M2 are both invertible matrices, then M3 is necessarily invertible;
multiplying both sides by M−1

2 M−1
1 ,

M1M2 =M3 ⇒ M−1
2 M−1

1 M1M2 =M−1
2 M−1

1 M3

1 =M−1
2 M−1

1 M3

⇒M−1
3 =M−1

2 M−1
1 = (M1M2)

−1

Since M−1
1 and M−1

2 exist, M−1
3 therefore also exists.

2. Associativity: Matrix multiplication is associative: M1(M2M3) = (M1M2)M3.
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3. Identity: This is just the n× n identity matrix,

e = 1 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


4. Inverse: We have restricted the set to strictly invertible matrices,M−1M =MM−1 = 1.

Non-invertible matrices would not form a group.

This group of invertible n × n matrices is called the general linear group GL(n, F ), where
F denotes the type of matrix entries that are allowed; for example, we could have F = R
(restricting the matrix entries to real numbers), or C (allowing the matrix entries to be complex
numbers). Some special subgroups of GL(n, F ) that show up frequently in physics are as follows:

• The orthogonal group O(N) is the subgroup of GL(N,R) which imposes the following
additional condition on the matrices M :

M is orthogonal: MTM = 1 ↔ M ∈ O(N)

This group is non-abelian.

• The special orthogonal group SO(N) arises from restricting to orthogonal matrices
that have the following additional (“special”) property:

M (is orthogonal and) has unit determinant: det(M) = 1 ↔ M ∈ SO(N)

You can verify that if det(M1) = 1 and det(M2) = 1, then det(M3 = M1M2) =
det(M1)det(M2) = 1, so this property continues to under matrix multiplication. Here, we
assume that N > 1.

For instance, the 2d rotation matrices Rθ in (2.8) parameterize the set of all possible 2×2
special orthogonal matrices, satisfying RT

θ Rθ = 1 and detRθ = 1, so that these matrices
indeed parameterize the matrix group SO(2). SO(2) is an abelian group.

Meanwhile, the 3d rotation matrices R as defined in (2.10) parameterize the set of all
possible 3 × 3 matrices that are special orthogonal (satisfy RTR = 1 and have unit
determinant detR = I). Then, the matrices R are indeed a representation of the elements
of SO(3). SO(N) for N ≥ 3 is a non-abelian group.

Exercise 2.10

Verify that the matrix R in (2.10) is a special orthogonal matrix. In particular, verify that:

(a) RTR = 1;

(b) detR = 1.

(c) Furthermore, show that the length of the vector v⃗ = (x, y, z) is invariant under rotations
by R (i.e. v⃗ → Rv⃗). Which of the properties (a) and/or (b) imply this invariance?
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• The unitary group U(N) is the set of N × N invertible square matrices with complex
entries, that additionally satisfies the unitarity condition:

M is unitary: M †M =MM † = 1 ↔ M ∈ U(N)

whereM † = (M∗)T denotes the complex transpose, or in other words hermitian conjugate
of M .

The special case of N = 1 corresponds to the group U(1), which we saw is simply the set
of complex phases (“1 × 1” complex matrices). U(1) is an abelian group isomorphic to
SO(2), describing the group of rotations in 2d. However, for general U(N > 2) this is a
non-abelian group.

• While we’re covering the most important matrix groups that appear in physics, we would
be remiss to not mention the special unitary group SU(N), which is the subgroup
of the unitary group that has the additional (you guessed it) “special” condition of unit
determinant:

M (is unitary and) has unit determinant: det(M) = 1 ↔ M ∈ SU(N)

Here we assume that N > 1 (there is no SU(1)). Later in our discussion of quantum
mechanics especially we will return to applications of SU(2) in physics.

In more detail: SU(2): For example, a general SU(2) matrix can be written in terms of two
complex parameters a, b satisfying the constraint |a|2 + |b|2 = 1, as:

M =

(
a −b∗
b a∗

)
(2.11)

It is straightforward to show that the inverse of M is its Hermitian conjugate, so that,

M †M =

(
a∗ b∗

−b a

)(
a −b∗
b a∗

)
=

(
|a|2 + |b|2 0

0 |a|2 + |b|2
)

=

(
1 0
0 1

)
and that detM = |a|2 + |b|2 = 1. Since this group can be parameterized by two complex
parameters = four real parameters satisfying one constraint, it actually depends on only three
independent real parameters. The dimension of this group is then 3; the same dimension as
SO(3) (which depended on the 3 real parameters θ1, θ2, θ3.

6 These 2 × 2 SU(2) matrices act
on two-component complex vectors, which in physics are called spinors. These spinors are
the analogue of vectors in the real rotation group, and have their name because the types of
particles that are represented by spinors have (you guessed it) spin! (Particles like electrons
with spin-1/2 are acted on in this way.) We may return to this point later for a discussion of
spin angular momentum in quantum mechanics.

——— End Lecture 6.

Application: to crystal lattices There are 32 unique so-called crystal lattices, repeating
lattices in 3-dimensions. Schematically, the first step of this classification arises from finding all
the finite subgroups of O(3), the group of orthogonal 3×3 matrices. This is the pertinent group
since the group of lattice symmetries that fix a specific lattice point can be thought of as real
3× 3 matrices, which must be orthogonal so that the angles between the various lattice vectors
are preserved. Applying some additional constraints, in particular that the transformation must
map the lattice back to itself, leads to the complete list of 32 symmetry groups.

6 If you’ve seen the Pauli spin matrices before, the three generators of this group can be taken to be the three
Pauli matrices.
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Figure 4: Picturing the 32 possible crystal lattices. Image by GeologyIn.com.

Application: Quantum computing In quantum computing, quantum logic gates are the
building blocks of quantum circuits. Quantum gates that act on n qubits are described as U(2n)
matrices, which are unitary because they need to enact unitary operations on the qubits. They
act on 2n dimensional basis vectors, which correspond to all the possible outcomes once the
state of the qubits is measured.

For example, single-qubit quantum gates are 2 × 2 unitary matrices. Some of the most
important single-qubit operations are enacted by the Pauli matrices, called the “Pauli gates”:

σx = NOT =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
along with the identity.

Application: Lie groups An infinite, continuous group which additionally posseses the
property that functions of the elements of the group are smooth, differentiable, and analytic, is
called a Lie group. Another way to say this is that a Lie group is a continuous group which is
also a smooth manifold, where a manifold is a space that locally looks like flat Euclidean space.

For example: consider SO(2) ∼= U(1). The group is parameterized by a single continuous,
real parameter θ. (We call the dimension of a Lie group the number of continuous parameters
that is needed to parameterize it, so SO(2) ∼= U(1) are Lie groups of dimension 1. The dimension
is equal to the number of generators of the Lie group.) Given some representation of our group
(for example, the matrix Rθ which is a function of θ), we have that

Rθ1 ·Rθ2 = Rθ3

in other words, the group closes; two rotations composed yield a third rotation. Now, clearly
θ3 is a continuous, analytic function of θ1 and θ2 – in this simple case, θ3 = θ1 + θ2 mod 2π.
The crucial step to recognizing a Lie group is to notice that the group action can be viewed as
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actually mapping these continuous variables θ to each other; in this case, as

f(θ1, θ2) = θ3 = θ1 + θ2 mod 2π

The fact that this function is nice and differentiable means that we can do things like Taylor
expand our group elements around θ = 0, and so on.

More generally, a Lie group of n dimensions is parameterized by some continuous, n-
dimensional space M , so that the group action maps points a, b ∈M to a third point c ∈M so
that the mapping function is analytic:

g(a) · g(b) = g(c) ⇒ f(a, b) = c , for f a continuous, analytic function of a, b

The space M is locally flat, which just means that if I zoom in to very tiny distances it looks
like flat n-dimensional space Rn.

All of the examples of matrix groups we have mentioned above are Lie groups. In the 1-
dimensional example of SO(2) ∼= U(1), the manifold in question is simply the circle, since it’s
parameterized by the variable θ which is a coordinate on the circle. In the example of SO(3), the
manifold is 3-dimensional, and one basis for the generators is in terms of the Rx(α), Ry(β), Rz(γ)
we gave above. In this case the manifold corresponds to the solid ball in 3d space that identifies
antipodal points on the surface of the ball (basically, since rotations by π and −π are the same).

It seems that Lie groups must be enormously complicated. However because of the additional
data of a manifold structure, it is nevertheless possible to study them in detail, and even classify
them.

A bit of history: Lie groups had humble beginnings in Norwegian Sophus Lie’s efforts to
solve differential equations. He was inspired by the attempts in the late 18th century and early
19th century to solve algebraic polynomial equations. Galois showed that a general 5th degree
equation (like, x5 − x − 1

3 = 0) – unlike equations of lower degrees – cannot be solved with
radicals, by translating the solvability of this equation to the solvability of a finite permutation
group of the roots called the Galois group. Sophus wondered if these sorts of symmetry methods
that were useful for solving algebraic equations be used to solve differential equations. Pursuing
this approach led to the development of Lie theory.

Exercise 2.11

(a) A general element of U(1) is a complex number z = eiθ. Writing z = x+ iy for real
variables x, y, verify that x, y define a circle of radius 1 in the plane (R2). This is
why U(1) as a manifold is a circle (the “1-sphere” S1).

(b) A general element of SU(2) is a matrix M of the form (2.11). Writing a = x + iy
and b = z+ iw for real variables w, x, y, z, verify that w, x, y, z define a 3-dimensional
sphere of radius 1 in 4-dimensional flat space (R4). Thus SU(2) as a manifold is the
3-sphere S3.

——— End Lecture 7.
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2.7 Appendix: Summary of terms and examples

Abelian group: A group whose elements all commute with one another, a · b = b · a for all
a, b ∈ G. (A symmetry is either abelian or non-abelian.)

Associativity: the property that a composition law satisfies (a · b) · c = a · (b · c).

Cayley table: The table describing the structure of a finite group, by arranging all possible
products of a group’s elements.

Closure: The property that composition of any members of a set always maps to another
member of the set.

Continuous symmetry: A symmetry that describes continuous transformations of a system.
(A symmetry is either continuous or discrete.)

Discrete symmetry: A symmetry that describes discrete, non-continuous transformations of
a system. (A symmetry is either continuous or discrete.)

Finite group: A group containing a finite number of elements. (A symmetry is either finite
or infinite.) Note: all finite groups are discrete, but not all discrete groups are finite.

Generators: The minimal subset of a group such that every group element can be expressed as
(“generated by”) a composition of finitely many elements of the subset and their inverses.

Group: A set of elements equipped with a multiplication/composition law that satisfies the
properties of closure, associativity, identity, and inverse.

Identity: An element e that leaves unchanged every element of a set when the operation is
applied: e · a = a · e = a .

Infinite group: A group containing an infinite number of elements. (A symmetry is either
finite or infinite.)

Inverse: The inverse of an element a is the element a−1 such that a−1 · a = a · a−1 = e.

Isomorphism: Two group are said to be isomorphic (G ∼= G′) if there exists a bijective map
between their group elements that preserves the group multiplication law.

Lie group: A continuous group that is also a smooth manifold.

Matrix group: A group whose elements consist of invertible matrices, where the group law
corresponds to matrix multiplication.

Non-abelian group: A group that contains elements that do not commute with one another,
a · b ̸= b · a for some a, b ∈ G. (A symmetry is either abelian or non-abelian.)

Order (of a group): The number of group elements of a finite group.

Representation: A group representation is a realization of the group’s elements as linear
operators acting on a vector space. Denoting the linear operators as D(a) for a ∈ G,
they must (1) satisfy the group multiplication law, D(a)D(b) = D(ab), and (2) realize the
identity element as the identity operator on the vector space, D(e) = 1.

Subgroup: A subset H of a group G that itself satisfies the conditions to be a group.
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Examples of groups considered in this section:

• Dihedral group Dn: the group of symmetries of a regular polygon with n sides (where
generally we take n ≥ 3). This group is of order 2n, consisting of n rotational symmetries
and n reflectional symmetries. It is generated by 2 elements. Descriptors: finite, discrete,
non-abelian.

For example, D3 is the order-6 symmetry group of the equilateral triangle, and D4 the
order-8 symmetry group of the square.

• Cyclic group Zn: an order n group generated by a single element a, whose n elements
can be expressed as {a, a2, . . . , an = e}. Descriptors: finite, discrete, abelian. Zn

∼= Zn.

For example, Z2 is the order 2 group consisting of elements {a, e}, such that a2 = e. Z2

is the unique finite group of order 2.

• Integers Z under addition: the infinite group consisting of all integers under the
composition law of addition. Descriptors: infinite, discrete, abelian.

• Integers modulo n under addition Zn: the equivalence classes of integers modulo n,
so that a · b = (a+ b) mod n. An order n group isomorphic to the cyclic group, Zn

∼= Zn.
Descriptors: infinite, discrete, abelian.

• Symmetric group Sn: the set of all permutations of n objects. This group is of order n!,
and is generated by n− 1 elements. Descriptors: finite, discrete, non-abelian for n ≥ 3.

For example, the symmetric group S3 is isomorphic to D3, S3 ∼= D3.

• General linear group GL(N,F ): the group of invertible N×N matrices over the field F
(for instance, we could take F = R or C). Descriptors: infinite, continuous, non-abelian.

• Orthogonal group O(N): the group of N ×N invertible matrices with real components
that are also orthogonal, satisfying MTM = 1. Descriptors: infinite, continuous, non-
abelian.

• Special orthogonal group SO(N): the group of N × N invertible matrices with real
components that are also (1) orthogonal, satisfying MTM = 1, and (2) have unit deter-
minant, det(M) = 1. Descriptors: infinite, continuous, non-abelian for N ≥ 3, abelian
for N = 2.

This group corresponds to the group of rotations in N -dimensional Euclidean space. For
example, SO(2) is the group of rotations in the plane, and SO(3) is the group of rotations
in 3d.

• Unitary group U(N): the group of N×N invertible matrices with complex components
that are also unitary, satisfying M †M = MM † = 1. Descriptors: infinite, continuous,
non-abelian for N ≥ 2, abelian for N = 1.

The case of N = 1 corresponds to the set of complex phases eiϕ for 0 ≤ ϕ < 2π, describing
the group of continuous rotations ϕ about an axis. U(1) is isomorphic to SO(2), U(1) ∼=
SO(2).

• Special unitary group U(N): the group of N × N invertible matrices with complex
components that are also (1) unitary, satisfying M †M = MM † = 1, and (2) have unit
determinant, det(M) = 1. Descriptors: infinite, continuous, non-abelian.
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Some useful facts about matrices:

A matrix is an array of numbers. The dimension of an n × n square matrix is the number
of its rows or columns, n. A column matrix is an n× 1 matrix of n rows and 1 column, while a
row matrix is a 1× n matrix of 1 row and n columns.

The matrix transpose is the exchange of its rows and columns, which for a square matrix
yields its reflection about the diagonal; for instance, a11 a12 a13

a21 a22 a23
a31 a32 a33

T

=

 a11 a21 a31
a12 a22 a32
a13 a23 a33

 ,

 a1
a2
a3

T

=
(
a1 a2 a3

)
(2.12)

The Hermitian conjugate of a matrix is its conjugate transpose, given by first complex conju-
gating its entries and then taking the transpose, A† = (A∗)T . A symmetric square matrix is
invariant under reflection about the diagonal, AT = A. An anti-symmetric square matrix is
equal to its negative transpose, AT = −A.

It is often useful to use an index notation to describe the entries of a matrix. By the notation
Aij , we mean the entry of the matrix A in the i’th row and the j’th column; so, the first index
is a row index and the second is a column index (see (2.12) for an example). For an m × n
matrix, the row index i runs over {1, . . . ,m} and the column index j runs over {1, . . . , n}.

For example, in index notation the formula for the entries of the transpose of a matrix A is
(AT )ij = Aji. In index notation, the multiplication of an m× n matrix A and n×m matrix B
can be written as,

(AB)ij =
n∑

j=1

AijBjk , i, j = 1, . . . ,m

which yields an m×m matrix. Matrix multiplication is associative, (AB)C = A(BC), but not
necessarily commutative, AB ̸= BA.

An n×n matrix A is invertible if there exists another matrix A−1 such that AA−1 = A−1A =
1 for 1 the n× n identity matrix of 1’s on the diagonal and 0’s elsewhere.

The trace of an n × n square matrix is the sum of its diagonal entries, Tr(A) =
∑n

i=1Aii.
The trace satisfies

Tr(AB) = Tr(BA) , Tr(A) = Tr(AT ) .

The determinant of an n×n square matrix is a number which encodes various properties of
the matrix. For example, the determinant of a 2× 2 matrix is given by,

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21 .

The determinant satisfies det(AB) = (detA)(detB).
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3 Symmetries of Spacetime and Special Relativity

Possibly helpful resources:

• MOST RECOMMENDED: A First Course on Symmetry, Special Relativity, and
Quantum Mechanics by Kunstatter and Das, Section 4.5 and Chapter 6 Sections 6.1
– 6.4, 6.8 – 6.11.

• University of Cambridge Professor David Tong’s lecture notes on Special Relativity
are a nice additional resource, especially Section 7.3. Available at this link.

• For review: If you need to brush up on some of the concepts in special relativity
that you learned in PHYS 200 (we will do some small amount of review in class), I
posted my PHYS 200 lecture notes from Fall 2024 to Moodle. Otherwise, you might
also wish to reference Section 5 and the rest of Section 6 from Kunstatter-Das.

3.1 Isometries of Euclidean space and classical physics

Consider 3d (Euclidean) space, with coordinates x⃗ = (x, y, z). An observer sees a stationary
ball on the ground, announcing that at a particular time (say, t = 0) the ball is at location
x⃗ball = (xb, yb, zb). Meanwhile, a second observer shares the same origin as the first observer,
but has rotated her axes to use coordinates x⃗′ = (x′, y′, z′), where x⃗′ = Rx⃗ for some rotation
matrix R (in general, specified by a matrix (2.10)). She too sees the ball, and declares that it
sits at coordinates x⃗′ball = (x′b, y

′
b, z

′
b).

There is no reason that the coordinates of the two observers need to agree with each other;
there is nothing wrong with using different rotated coordinate systems. What has to be true so
that the primed and unprimed coordinate systems agree on the same physics?

The answer is that the transformation should preserve distances between pairs of points.
Distance-preserving transformations are known as isometries. In our example, the two ob-
servers should certainly agree that the ball is a certain distance away from their shared origin.
That distance is calculated by the 3d Pythagorean theorem,

d2 = x2b + y2b + z2b = x′2b + y′2b + z′2b

In other words, however we decide to describe our coordinate system, the Pythagorean theorem
should hold true!

What is the condition on the 3d rotation matrix R for this to be true? In a given frame (say
the unprimed frame), the distance between two points x⃗1 and x⃗2 is calculated by computing
the displacement vector ∆x⃗ = x⃗2 − x⃗1, and then computing the inner product,

d2 = (∆x⃗)T (∆x⃗) =
(
∆x ∆y ∆z

) ∆x
∆y
∆z

 = (∆x)2 + (∆y)2 + (∆z)2 (3.1)

where ∆x = x2 − x1, ∆y = y2 − y1, ∆z = z2 − z1. (Of course, in our example of the ball
x⃗1 = (0, 0, 0) is just the origin, so ∆x = xb, etc.) In the primed frame, however, coordinates are
transformed by a rotation matrix R, as ∆x⃗′ = R∆x⃗ so we would compute

d′2 = (∆x⃗′)T (∆x⃗′) = (R∆x⃗)T (R∆x⃗) = (∆x⃗)TRTR∆x⃗
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Figure 5: The transformation O in (3.2) enacts a reflection about the x-y plane.

(We used (AB)T = BTAT for two matrices A,B.) We see that we can only have d2 = d′2 if
RTR = 1. In other words: distance measurements in 3d (flat, Euclidean) space are
invariant under rotations of the coordinate axes if the rotation matrix is orthogonal,

RTR = 1

This property is manifestly true of the general 3d rotation matrix R given in (2.10), as you
verified in Exercise 2.10. Actually, we see that this property is true of any orthogonal matrix
O satisfying OTO = 1; not just the special orthogonal matrices R restricted to detR = 1. We
conclude that the group O(3) is part of the isometry group of 3d Euclidean space — it is the
group of distance preserving transformations of Euclidean space that preserve a fixed point (the
origin).

Note that the group O(3) includes the rotation group SO(3) as a subgroup, but also matrices
that don’t have unit determinant. For example, consider the matrix

O =

 1 0 0
0 1 0
0 0 −1

 (3.2)

This matrix O satisfies OTO = 1, but has determinant −1 rather than +1, so O is an element
of O(3) but not of SO(3). What does this transformation do? Acting on a vector x⃗,

Ox⃗ =

 1 0 0
0 1 0
0 0 −1

 x
y
z

 =

 x
y
−z


It keeps the x and y coordinates the same, but takes z → −z, thereby corresponding to a
reflection about the x-y plane. Similarly, reflections about the other planes are good distance-
preserving maps of 3d Euclidean space, and are included in the group O(3).

What other isometries are there of 3d Euclidean space? Besides rotations and reflections
about a fixed point, we also should be able to translate the origin by a constant amount. Define
a translation as an operation that takes all points in the plane and moves them over by a
constant vector a⃗

x⃗→ x⃗+ a⃗

In matrix notation,  x
y
z

→

 x
y
z

+

 ax
ay
az

 =

 x+ ax
y + ay
z + az


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Exercise 3.1

Verify that the set of translations in three dimensions – i.e. the translations of a point by
a constant real vector a⃗ as x⃗→ x⃗+ a⃗ – form a group.

The group of isometries of 3d Euclidean space is called the Euclidean group, and it consists
of the group O(3) which contains rotations and reflections, along with the group of translations.
Then, any isometry of 3d Euclidean space has the form

x⃗→ Ox⃗+ a⃗ (3.3)

for O ∈ O(3) an orthogonal matrix, and a⃗ a constant 3-vector. In general n-dimensions, this
group is the isometry group of flat n-dimensional space, consisting of O(N) along with constant
translations by n-dimensional vectors.

Classical mechanics and the Euclidean group The equations of motion in classical
physics are invariant under the set of transformations (3.3), meaning they hold true in any
frame of reference related by a rotation, reflection, and/or translation.

For example, consider the motion of a body described by a vector x⃗1. A force acts on this
body directed from x⃗2 → x⃗1. We might consider a constant force, or a force that is in general
a function of the distance r = |x⃗1 − x⃗2| between the bodies, so we will write F⃗ = F (r)r̂ for r̂
the unit vector pointed from the body exerting the force to the first body. Newton’s second law
F = ma states that the motion of the body follows from,

F (r)r̂ = m¨⃗x1 , r⃗ = x⃗1 − x⃗2 (3.4)

Applying the general transformation x⃗→ x⃗′ = Ox⃗+ a⃗, in the primed frame the acceleration
of the body is transformed by the matrix O, since

x⃗′1 = Ox⃗1 + a⃗ , ˙⃗x′1 = O ˙⃗x1 , ¨⃗x′1 = O ¨⃗x1

On the left-hand-side, the magnitude of the vector r⃗ is unchanged, since the translation a⃗ cancels
in the difference of the vectors, and OTO = 1:

|x⃗′1 − x⃗′2| = |O(x⃗1 − x⃗2)| = |x⃗1 − x⃗2|

(You can see why it was important to consider the transformation of differences between vectors;
if x⃗1 is supposed to describe the motion relative to the origin in the unprimed frame, and in
the primed frame the origin has been translated by a distance a⃗, we need to take this relative
translation into account! Even if x⃗2 = 0, this translation of the origin needs to be accounted
for.. it is the distance between the two bodies that should remain invariant.) Meanwhile, the
unit vector r̂ transforms as

r̂′ =
x⃗′1 − x⃗′2
|x⃗′1 − x⃗′2|

= Or̂

Therefore, we have found that,

F (r′)r̂′ = F (r)Or̂ , m¨⃗x′1 = mO ¨⃗x1 ⇒ O (F (r)r̂) = O
(
m¨⃗x1

)
Both sides of the transformed version of (3.4) are acted on by the same matrix O. Multiplying
by the matrix OT on either side of the equation gets rid of it, as OTO = 1, thus showing
that the equations of motion resulting from Newton’s second law (3.4) are invariant under the
isometries of Euclidean space.
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3.2 Computing distances in more general geometries

We just discussed the isometries of flat 3d flat (Euclidean) space, and the fact that classical
physics is invariant under these isometries. What if we wanted to study physics in another type
of space? This is not a rhetorical question – we will see soon that the consistency of physics
with special relativity requires us to consider precisely this question!

The most basic question you can ask that characterizes the properties of a space is how do we
compute distances? Computing distances in flat n-dimensional space, for instance, corresponds
to the n-dimensional version of the Pythagorean theorem,

(∆s)2 = (∆x1)
2 + · · ·+ (∆xn)

2 (3.5)

From here on out we will call the distance squared between two points as (∆s)2, to uniformize
our notation. Here, ∆x1 = (x1)B−(x1)A, ∆x2 = (x2)B−(x2)A, and so on for the displacements
between two points A and B.

Actually, we should view this distance formula as a defining property of the geometry of the
space in which we are computing the distance: that it is Euclidean (flat). For instance, in 2d
space, this formula is just the usual Pythagorean theorem, which must be true because in the
plane the sum of the squares of the lengths of two sides of a right triangle must be equal to the
square of the length of the hypotenuse. From this one relationship, we can derive all the other
properties of 2d Euclidean geometry that we know and love: that parallel lines never meet, that
the sum of the angles in a triangle is 180◦, and so on.

It will be useful moving forward to consider the ability to compute infinitesimal distances
as well. Letting dx and dy denote infinitesimal increments in x and y, and ds an infinitesimal
distance traveled, the 2d distance formula can be written simply as

ds2 = dx2 + dy2 (3.6)

We call ds the line element: the line segment associated with an infinitesimal displacement.
The line element ds2 = dx2 + dy2 defines the geometry of the space in which we are computing
distances, and can be written in whatever coordinates you like. Above we used Cartesian
coordinates, but it is equally valid to use radial coordinates; for instance, translating x = r cos θ
and y = r sin θ would give a different presentation of the same line element,

ds2 = dr2 + r2dθ2 = dx2 + dy2 (3.7)

Exercise 3.2

Verify (3.7): Starting from ds2 = dx2 + dy2, show that ds2 = dr2 + r2dθ2.

This infinitesimal formula is useful to measure lengths of paths in 2d flat space, since we can
use it to just sum up the infinitesimal lengths. Say we wish to compute the length of a path L
that runs from point P0 to P1. We compute,

L =

∫ P1

P0

ds (3.8)

As an example, suppose we wish to compute the length of a path described by a function
y(x) = x from x = 0 to x = 1, so from P0 = (0, 0) to P1 = (1, 1). (Since this path is just
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Figure 6: The length of the bottom path is larger than the length of the top path; both are
computed by integrating the line element from the origin to P1.

a straight line, of course this should just compute the distance between the point P1 and the
origin.) We integrate the line element as follows:

L =

∫ P1

P0

ds =

∫ P1

P0

√
dx2 + dy2 =

∫ P1

P0

√
1 +

(
dy

dx

)2

dx

=

∫ 1

0

√
2 dx =

√
2 ≈ 1.41

where we used that for this path y = x, dy
dx = 1. Indeed, as we well know the distance between

the origin and the point (1, 1) is given by Pythagorean’s theorem as
√
2 =

√
12 + 12; this was

just a fancier way of computing that distance.

The fancier formula (3.8) is more useful for nontrivial paths; for instance, what is the
distance along the path y(x) = x2 from x = 0 to x = 1? Now, we still have that P0 = (0, 0) and
P1 = (1, 1), but dy

dx = 2x. The integral is given by,

L =

∫ P1

P0

√
dx2 + dy2 =

∫ 1

0

√
1 + (2x)2 dx

This is more nontrivial integral whose result is

L =
1

4

(
2
√
5 + sinh−1(2)

)
≈ 1.48

The length of the second path is longer than the length of the first path, as expected.

What if rather than living in flat 2d space, you lived on a surface of a sphere of constant
radius R. How would you measure the shortest distance between two points on the Earth, for
example, more generally the length of some specified path between two points on the Earth?
On the surface of the sphere, the Pythagorean theorem does not hold true, because the surface
has curvature. For example, lines on the sphere will always intersect eventually, since the space
curves. We need the version of (3.6) that holds on the surface of a sphere of radius R.

In this case, you can uniquely fix your position by specifying two angles: θ specifying your
latitude, and ϕ specifying your longitude. The corresponding Pythagoras law valid for measuring
distances on the sphere tells us that the line element that computes the distance between two
points specified by (θ, ϕ) is given by

ds2 = R2(dθ2 + sin2 θ dϕ2)

To compute the distance between two points P0 and P1 on the sphere we would need to integrate
this line element; for instance, if the path between the two points is described by some function
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Figure 7: The great circle path is the shortest path between two points (geodesic) on a sphere.

ϕ(θ), we would compute

L =

∫ P1

P0

ds =

∫ P1

P0

R

√
dθ2 + sin2 θ dϕ2 =

∫ θ1

θ0

R

√
1 + (ϕ′)2 sin2 θ dθ (3.9)

where ϕ′ = dϕ/dθ. More generally, we can use this formula to compute the minimum distance
between any two points on the sphere – also called the geodesic between two points. In 2d flat
space geodesics are straight lines, but in this 2d curved space the geodesics are great circle arcs.

——— End Lecture 8.

A geodesic is the path that minimizes the length. The general equation for a geodesic in
some space is given by the Euler-Lagrange equations (we will see these again when we discuss
Lagrangian mechanics!). Suppose we are in n-dimensional space, so ds2 is a function of n
variables x1, . . . , xn. The length of a path between two endpoints P0 and P1 is computed from
L =

∫ P1

P0
ds. Pick one of your variables – say x1 – to parameterize your path, so pull out a dx1

from the integrand. The rest of the integrand is in general a function of the other variables,
and their derivatives with respect to x1, x

′
2 = dx2/dx1, x

′
3 = dx3/dx1, etc.:

L =

∫ (x1)final

(x1)initial

I(x1;x2, x
′
2, x3, x

′
3, . . . ) dx1 , I =

ds

dx1

What is the path that extremizes the length? This is a classic problem in what’s known as the
calculus of variations, and the answer is given by the Euler-Lagrange equations. The Euler-
Lagrange equations tell us that for the path that extremizes this length, the integrand satisfies
the following n− 1 equations:

∂I

∂xm
=

d

dx1

∂I

∂x′m
, m = 2, . . . , n

In our sphere example, we only have n = 2 variables x1 = θ and x2 = ϕ, so that the integrand
is a function I(θ;ϕ, ϕ′ = dϕ/dθ), which satisfies

∂I

∂ϕ
=

d

dθ

∂I

∂ϕ′
, I = I(θ;ϕ, ϕ′) = R

√
1 + (ϕ′)2 sin2 θ . (3.10)
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Exercise 3.3

In this problem, we want to show that the path of shortest distance between two points
on the surface of a sphere of radius R lies along the great circle that connects the points,
i.e. that the great circle connecting the points is a geodesic. This is a generalization of
the definition of a straight line to curved space.

Find the formula that describes a geodesic on the surface of a sphere of radius R by
following the following steps:

(a) The integrand I of (3.9) is a function of θ and ϕ′, but is actually independent of ϕ.
Euler’s equation (3.10) thus implies that

∂I

∂ϕ
=

d

dθ

∂I

∂ϕ′
= 0

(does this equation look familiar from PHYS 210?) Use this equation to define a
constant of motion, c.

(b) Use your result from (a) to solve for ϕ′ as a function of c. Integrate to find ϕ(θ)
describing the geodesic.

Hint: To perform the integral, use the change of variables u = cot θ, and the integral∫
du√
a2 − u2

= sin−1
(u
a

)
.

To reiterate the crucial point of this subsection: the line element ds characterizes the differ-
ence between flat Euclidean 2d space, and the curved space on the sphere. For example, one
manifestation of the fact that the sphere has curvature is the fact that the sum of angles of
triangles on the sphere is greater than 180◦. Furthermore, parallel lines can in fact meet. The
geometry is different!

In different contexts, we might be interested in the isometries of a non-Euclidean geometry.
An essential place where this shows up in physics is in Special Relativity. This is what we’ll
explain next, after some review.

3.3 A brief review of Special Relativity

Galilean relativity

The essence of relativity is the fact that different observers can have different experiences of the
same events. An observer standing on a train platform watches a train speed by with constant
speed v to the right. Meanwhile, an observer on the train sits comfortably in their seat, and
from their perspective appears to watch the person on the platform zoom by with constant
speed v to the left. The laws of physics should not depend on which observer is doing the
observing, between any inertial (non-accelerating) frame of reference. Put another way, physics
should not depend on the physicist.

Applying this principle to classical mechanics results in the principle of Newtonian rel-
ativity (also called Galilean relativity): The laws of mechanics should take the same mathe-
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Figure 8: The primed (train) frame F ′ moves with speed v relative to the unprimed (platform)
frame F .

matical form in all inertial frames of reference.

As we have already argued, mechanics should definitely be invariant under the 3d Euclidean
group; applying a coordinate transformation (3.3) should not (and does not) change the equa-
tions of motion. Besides the isometries of 3d space, Newtonian relativity also needs to allow
for transformations between frames moving at constant velocities to one another; if the train
observer throws a ball, both the train observer and the platform observer should agree on the
same equations of motion for the ball. Such a Galilean coordinate transformation can be phrased
as

Galilean transformation: x⃗′ = x⃗− v⃗t (3.11)

where in this expression the primed frame is the frame at rest with respect to the train observer,
which is moving with constant velocity v⃗ relative to the platform observer.

For example, suppose the train observer throws a ball to the right, and the train moves with
constant speed v to the right relative tot he platform. If ˙⃗x = u⃗x̂ describes the velocity of a
ball according to the platform observer, and ˙⃗x′ = u⃗′x̂′ the ball’s velocity according to the train
observer, taking a derivative of the Galilean transformation says that the speeds are related as,

u′ = u− v (3.12)

In other words, the observer on the platform sees the ball moving faster. This makes sense; the
platform observer is watching a train move to the right with speed v and a ball on the train
also being thrown to the right, so they would see the ball moving faster than the ball’s speed
in the train’s rest frame.

The Galilean transformation is also clearly compatible with Newton’s second law; assuming
all speeds are constant, taking another derivative says that acceleration is invariant under a
Galilean transformation, a⃗′ = a⃗. More generally, classical mechanics is invariant under the
Galilean group, which includes both Galilean transformations and the Euclidean group.

Special Relativity

There is a problem with Galilean relativity: the speed of light is not invariant under a Galilean
transformation, while every experiment that has ever been done concludes that the speed of
light is always measured to be c = 2.998 × 108m/s, regardless of the inertial frame in which
you do the experiment. Einstein’s theory of special relativity grew from requiring that the
principle of relativity (that the laws of physics are the same in all inertial frames of reference)
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Figure 9: The relativistic gamma-factor γ = 1/
√
1− v2

c2
is always larger than 1, approaching

infinity as the relative speed v between frames approaches the speed of light.

is compatible with this experimental fact. As you learned in Modern physics, the theory of
relativity is based on the two postulates:

Relativistic Postulate 1: The laws of physics are the same in all inertial frames of reference.

Relativistic Postulate 2: The speed of light in vacuum has the same value c = 3× 108m/s
in all inertial frames, regardless of the velocity of the observer or the velocity of the source
emitting the light.

In your Modern Physics course, you explored the consequences of these postulates for ob-
serving physics between different boosted frames, including the effects summarized below. For
the purposes of these examples, suppose that primed frame moves with constant speed v relative
to the unprimed frame, as in Figure 8.

• Time dilation: Moving clocks tick slow. In other words, time moves the fastest in the
rest frame of a clock. We call the time elapsed in the rest frame of the clock the proper
time, typically denoted with the letter τ . Then, the time between ticks in the rest frame
of the clock ∆τ is related to the time between ticks according to the frame where the
clock is moving, ∆t, as

∆t = γ∆τ

γ is the relativistic γ-factor,

γ =
1√

1− v2

c2

Recall that the relativistic gamma-factor γ = 1/
√
1− v2/c2 is a dimensionless number

always greater than or equal to 1, since v ≤ c: for very small speeds v ≪ c γ approaches
1, while for very large speeds v close to the speed of light c the denominator goes to 0 so
that γ blows up to infinity. See Figure 9. Then, we see that for small speeds where γ ≈ 1
the effects of time dilation are not noticeable, but for large speeds closer to the speed of
light ∆t > ∆τ , which is to say that the time between ticks in the frame in which the clock
appears to be moving is larger, so the moving frame sees the clock tick slower.

For example, perhaps you remember learning about the twin paradox: one twin remains
on Earth, while the other twin takes off in a rocket moving with speed v = 4

5c to a
faraway star many light years away. The astronaut twin reaches the star, immediately
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turns around and comes home. Then, the two twins compare how much they have aged;
since heartbeats are a kind of clock, we expect that the moving twin will have aged less,
since time was moving comparatively faster on Earth (in this problem, the proper time
elapsed is the time elapsed in the rest frame of Earth). Since v = 4

5c leads to a γ-factor
of γ = 1√

1− 16
25

= 5
3 , according to the rest frame on Earth

∆tastronaut = γ∆τEarth =
5

3
∆τEarth

so the astronaut’s heart seems to beat 5/3 more slowly; for every year that passes according
to the Earth twin, only 3/5 of a year will have passed for the astronaut twin. By the time
the astronaut twin returns to Earth they will have aged less, and literally be younger! This
is not just science fiction, but is a well-measured effect int he real world, and important
to take into account for GPS systems communicated with fast-moving satellites.

• Length contraction: moving rulers contract in the direction of relative motion. (In
other words, the length of an object is always largest in its rest frame.) We call the length
of an object as measured in the object’s own rest frame proper length; denoting it LP ,
length contraction relates the proper length with the length L as measured in a moving
frame,

L =
LP

γ

Since γ is always bigger than 1, L < LP , so the ruler appears shorter in the moving frame.

Exercise 3.4

Suppose you have a meter stick, and can measure lengths up to 1 mm. Determine
the speed v that the ruler has to be moving at which relativistic effects become
measurable for this ruler.

• Simultaneity is relative: Events that are simultaneous in one frame of reference are
not necessarily experienced as happening at the same time in another frame of reference.

A classic example is the pole-vaulter paradox, which can be phrased as follows. There is a
barn with two doors that are 4 meters apart. A pole-vaulter practicing on the farm has a
pole of length 5 meters. How fast does the pole-vaulter have to run to fit the pole in the
barn? Do both the farmer and the running pole-vaulter agree that the pole will actually
fit in the barn?

The proper length of the barn is 4m, and the proper length of the pole is 5m, so in order
to in principle fit the pole in the barn the pole-vaulter has to run fast enough that the
pole appears to be length contracted from 5m to 4m:

5m/γ = 4m ⇒ γ =
5

4
, v =

3

5
c .

If the pole-vaulter runs at speed v = (3/5)c, the farmer at rest with respect to the barn
will see the pole as length contracted to the same length as the barn, so it looks like the
pole does fit.

However, from the perspective of the runner with the pole, the pole remains its proper
length of 5m, and it is the barn that appears length contracted relative to its proper
length,

4m/γ = 4m/(5/4) = 3.2 .m
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So the runner would say that there’s no way a 5m long pole can possibly fit in a seemingly
3.2m long barn. What’s going on?

The resolution is that in the frame of the runner, the ends of the pole do not coincide
with the walls of the barn at one instant in time: the front of the pole reaches the back
of the barn before the back of the pole reaches the front of the barn, so there is no one
instant in time where the entire pole fits in the barn. Events which are simultaneous to
the farmer (that the front of the pole reaches the back of the barn and the back of the
pole reaches the front of the barn, so that the whole pole appears to fit in the barn at one
instant in time) are not simultaneous to the runner. There is no contradiction; the farmer
sees the pole as fitting in the barn, the runner does not, and both observers really do see
observations that confirm they are in the right.

Figure 10: In the rest frame of the barn (left panel), where the pole is length-contracted and
moving with speed +v, the pole appears to simultaneously fit inside the barn. In the rest frame
of the runner (right panel), where the barn is length-contracted and moving with speed −v, the
pole does not fit inside the barn in one moment of time.

• Relativistic Doppler shift: electromagnetic radiation changes frequency depending on
how fast the source is moving relative to the observer. This is the effect that explains why
galaxies appear red-shifted or blue-shifted depending on whether they are moving away
or towards us; you can check, for instance, that in order for a blue light (with wavelength
λ = 460nm) to appear red (λ = 650nm), it has to be moving 1

3 the speed of light away
from you.

The Lorentz transformation

All of these effects can be derived from the Lorentz transformation: the transformation law
between the spacetime coordinates of events as seen in different reference frames, so that such
coordinate transformations are consistent with Einstein’s postulates. Let us recall the main
idea: suppose in a frame F I measure the coordinates of an event as happening at (x, y, z), and
at time t. Frame F ′ moves with speed v in the x-direction relative to frame F . What does an
observer in frame F ′ measure as the coordinates of the same event, in a coordinate system that
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is at rest with respect to them? The answer is given by the Lorentz transformation,

t′ = γ
(
t− v

c2
x
)
, x′ = γ(x− vt)

y′ = y , z′ = z , γ = 1/

√
1− v2

c2

(3.13)

Generally, we will refer to a transformation between inertial frames moving relative to one
another as a “boost” between frames.

Figure 11: Two events in the rest frame of the person (frame F ).

It’s useful to have an example in mind. Suppose at time t = 0 a bee flies by at constant
speed v, immediately in front of the observer. Let’s call the frame at rest with respect to the
person F , and the frame at rest with respect to the bee F ′, moving at speed v in the x-direction
relative to frame F . Both the bee and the person have timers, and start their timer as they
pass by each other at t = t′ = 0 (call this Event A). We’ll synchronize their coordinate systems,
so at t = t′ = 0 as the bee passes by, they are at x = y = z = 0 and x′ = y′ = z′ = 0; in other
words,

(tA, xA, yA, zA) = (0, 0, 0, 0) , (t′A, x
′
A, y

′
A, z

′
A) = (0, 0, 0, 0)

Some time t later, the observer sees the bee fly past the edge of their yard, a distance L away.
This occurs at t = L/v, since the bee was flying with speed v. Call Event B the moment the
observer sees the bee fly past the edge of the yard, at which point they stop their timer. In the
unprimed frame, this event occurs at

(tB, xB, yB, zB) = (L/v, L, 0, 0)

According to the bee’s rest frame, what are the coordinates of event B? The answer is given by
applying the Lorentz transformation:(

t′B, x
′
B, y

′
B, z

′
B

)
=
(
γ(tB − v

c2
xB), γ(xB − vtB), yB, zB

)
=

(
γL(

1

v
− v

c2
), 0, yB, zB

)
=

(
L

γv
, 0, 0, 0

)
where we simplified using γ = 1/

√
1− v2/c2. This answer makes sense: in the rest frame of

the bee, Event B corresponds to the bee staying still at x′ = 0, while the person and yard move
to the left. But in the bee’s frame, the length of the yard is length-contracted from L to L/γ,
so the bee will see this event occur at a time t′ = (L/γ) · 1/v later. In this way, we see that a
simple application of the Lorentz transformation is compatible with length contraction.

The Lorentz transformation of coordinates of events also implies the Lorentz transformation
of velocities. Suppose the person on the train throw a ball, and you wish to describe the velocity
of the ball u⃗ in either the primed (train) frame or the unprimed (platform) frame, where the train
moves with speed v in the x-direction relative to the platform. See Figure 12. By differentiating
the Lorentz coordinate transformations, we arrive at the velocity transformation laws,

u′x =
ux − v

1− vux
c2

, u′y =
uy

γ
(
1− vux

c2

) u′z =
uz

γ
(
1− vux

c2

) (3.14)
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Figure 12: Measuring the speed of an object in the primed versus unprimed frame.

Both the velocities parallel to and perpendicular to the direction of relative motion between the
frames transform.

The Lorentz coordinate transformation (3.13) is the analogue of the Galilean transformation
(3.11), and the velocity transformation (3.14) is the analogue of the Galilean velocity transfor-
mation (3.12), designed to be consistent with Einstein’s second postulate. In particular, in
the non-relativistic limit that everything travels slowly so v ≪ c and γ → 1, the relativistic
expressions exactly reproduce the classical ones: for the coordinate transformations,

t′ = γ
(
t− v

c2
x
)

v≪c−→ t ,

x′ = γ(x− vt)
v≪c−→ x− vt

and for the velocity transformations,

u′x =
ux − v

1− vux
c2

v≪c−→ ux − v

with u′y → uy and u′z → uz. So, special relativity is consistent with classical relativity in the
non-relativistic limit. But in the other limit, it’s consistent with the second postulate: applying
(3.14) to a light beam, if the unprimed frame sees the beam moving at speed ux = c, so does
the primed frame:

u′x =
c− v

1− vc
c2

= c

——— End Lecture 9.

3.4 The invariant interval and spacetime diagrams

We saw that Newton’s laws are invariant under the isometries of 3d Euclidean space (3.3), as
well as the Galilean transformations (3.11) and (3.12), so that classical physics is consistent with
rotations and translations of your coordinate system, as well as boosts between different inertial
frames of reference that obey (3.11). What are the symmetries that are consistent with special
relativity, once I impose the condition that the speed of light has to be constant in all frames
and so boosts between different inertial frames of reference obey the Lorentz transformations
(3.13) and (3.14)?

We certainly believe that special relativity should remain invariant under the 3d Euclidean
group (3.3), since regardless of whether objects move close to the speed of light, it still should
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not matter whether we rotate or translate our coordinate system. But what is the symmetry
associated to invariance under boosts between frames moving at relative speeds? In other words,
what is the symmetry principle underlying the Lorentz transformation?

The answer is that there is an analogue of the invariant distance interval (3.5) that has to
remain invariant under Lorentz transformations, but crucially this invariant distance interval
(∆s)2 involves both the spatial coordinates and time coordinate,

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (3.15)

(And yes, there is a funny minus sign in front of (c∆t)2!) If two events occur simultaneously
at the same value of t so that ∆t = 0, then ∆s is simply the distance we would normally
measure between two points in space. More generally, ∆s should be thought of as the distance
in spacetime which is invariant under Lorentz transformations.

Some comments:

• Conceptually, it should not be surprising that the time coordinate t is put on the same
footing as the spatial coordinate x, y, z in special relativity. Special relativity tells us that
time is relative, length is relative, and simultaneity is relative, and that time transforms
under Lorentz transformations along with the spatial coordinates. Equation (3.15) tells us
that we should think of ct – which has units of distance, since c is given in meters/second
and time is measured in seconds – as a coordinate on par with the spatial coordinates
x, y, z.

• The invariant interval (∆s)2 is the quantity that all observers in all inertial frames must
agree upon, which is compatible with the Lorentz transformation. The important point is
that without the −c2(∆t)2 bit, observers in different frames can disagree about the usual
Euclidean distance between two points, but will always agree about the value of ∆s. It
provides an observer-independent characterization of the distance between any two events.
This point is exemplified in the following exercise.

Exercise 3.5

The positions of two drifting asteroids (x1, y1, z1) and (x2, y2, z2) are tracked by an observer
in frame F . The distance between them d at a given moment in time is calculated by
the usual Pythagorean formula,

d2 =
√

(∆x)2 + (∆y)2 + (∆z)2 (3.16)

where ∆x = x2 − x1, etc. An observer in frame F ′ moving with speed v in the x-direction
relative to the observer in frame F also computes the distance between the asteroids, with
result d′.

(a) Suppose that the relative motion between the frames v is much smaller than the speed
of light, so that we can use a Galilean coordinate transformation to go between the
frames. Show that the distance d′ measured in frame F ′ is the same as the distance
d measured in F .

This result shows that the usual Pythagorean measure of distance is invariant under
a Galilean coordinate transformation.
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(b) Show that the distance d between the two events as defined in (3.16) is not invariant
under a Lorentz transformation.

In other words, when special relativistic effects become important, observers will not
agree on the usual Pythagorean distance formula!

(c) Show that if we define the spacetime distance ∆s between events as,

(∆s)2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (3.17)

that ∆s is invariant under the Lorentz transformation. So, while observers disagree
on (3.16), they agree on (3.17).

The light cone Let’s get a feel for what different values of ∆s mean. For simplicity let’s do
some examples in 1 spatial dimension, i.e. in (1+1)-dimensional spacetime, so that we can set
∆y = ∆z = 0 and just deal with

(∆s)2 = −(c∆t)2 + (∆x)2 in 1 spatial dimension

Consider the following three examples:

• Consider the path of a light beam, which travels at the speed of light in the x direction
between points (ct1, x1) and (ct2, x2), where since the beam travels at the speed of light,

∆x

∆t
=
x2 − x1
t2 − t1

= c (3.18)

The spacetime interval ∆s between these coordinates computes to

(∆s)2 = −c2(∆t)2 + (∆x)2 = −c2(∆)2 + c2(∆t)2 = 0

We have learned that (∆s)2 = 0 for anything traveling at the speed of light.

• Consider a particle moving with constant speed u < c between coordinates (ct1, x1) and
(ct2, x2). The coordinates are related by,

∆x

∆t
=
x2 − x1
t2 − t1

= u (3.19)

so we can compute the invariant interval between the coordinates as,

(∆s)2 = −c2(∆t)2 + (∆x)2 = −c2(∆t)2 + v2(∆t)2 = c2(∆t)2
(
u2

c2
− 1

)
Since u < c, the factor (u2/c2 − 1) is always negative. So, we learn that (∆s)2 < 0 for a
particle traveling at a speed slower than the speed of light.

• No particle can move faster than the speed of light, so the previous bullet point implies that
we must always have that the invariant interval calculated between two events satisfies,

(∆s)2 ≤ 0

A particle traveling faster than light would have (∆s)2 > 0, which is physically not
possible.

50



Figure 13: The wordlines of particles moving at speeds v less than c are constrained to lie within
the lightcone (depicted as yellow lines) on a spacetime diagram. In this diagram we’ve assumed
the particle starts at x = 0 at t = 0, so that the lines intersect the origin.

The results of these bullet points can be illustrated with the help of spacetime diagrams,
which visually represent the paths of particles or relationships between events as a function of
both space and time. A spacetime diagram is a plot of ct against the spatial coordinates x, y, z
in a fixed inertial frame – although, since it is difficult to draw a 4-dimensional plot, we will
focus on spacetime diagrams of just ct plotted against x with the y and z coordinates set to
constant values and not depicted. Each point on a spacetime diagram represents an event with
coordinates (ct, x) (restricting to 1 spatial dimension). Note: this labeling of coordinates with
the vertical axis labels ct listed first and horizontal axis labels x listed second is backwards
from the usual way we list coordinates on a plot, but is chosen to be consistent with a standard
convention we will introduce later in this section.

In our example of the light beam, if we put ct on the vertical axis and x on the horizontal
axis, (3.18) implies that the slope satisfies c∆t/∆x = 1. So, the path that a light-beam traces
on a spacetime diagram is a straight line with slope 1, which is a straight line at a 45◦ angle.
We call the path of the light beam through spacetime its worldline. Similarly, if the light
beam were moving to the left with speed c rather than to the right with speed c, its path would
satisfy ∆x/∆t = −c, so that its worldline corresponds to a line with slope −1 at 45◦ angle to
the negative x-axis. We call the cone bounded by these two worldlines – the region around the
ct-axis bounded by the worldlines of a light ray – the light cone.7 (∆s)2 computed on the light
cone always evaluates to zero.

What we learned in the second and third bullet points above is that the worldline of anything
moving with a speed less than c lies within the light cone: since the worldline of a particle moving
with speed u to the right satisfies (3.19), its slope on a spacetime diagram is

slope: c∆t/∆x = c/u > 1

its worldline corresponds to a line at set at an angle of 45◦ to 90◦ to the horizontal axis.
Similarly, a particle moving with speed u to the left corresponds to a worldline between 45◦ and
90◦ to the negative x-axis, so that the particle is bounded by the lightcone. Some examples of
worldlines of particles are depicted in Figure 13.

The invariant interval has a peculiar property: it is not positive definite. (∆s)2 between
events located within the light cone always evaluates to a negative number. This would be

7 Generalizing from just one spatial coordinate x to 2 spatial coordinates x, y, the lightcone really forms a
cone.
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strange if we insisted that we deal with ∆s rather than (∆s)2, since it would imply that ∆s is
an imaginary number inside the lightcone! However, this is perfectly fine if we just talk about
(∆s)2 (just go with it..).

Practically speaking, knowing that the spacetime interval ∆s is invariant under boosts be-
tween frames is extremely useful for solving problems in special relativity, and visualizing events
on spacetime diagrams can be a helpful way to understand how events are experienced in dif-
ferent inertial frames. A nice example is illustrated by the following exercise.

Exercise 3.6

A subatomic particle has a lifetime of τ . In its rest frame, it is born at (ct′, x′) = (0, 0),
and decays a proper time τ later, at (ct′, x′) = (cτ, 0).

(a) Draw the worldline of the particle in its rest frame on a spacetime diagram.

(b) On a separate diagram, draw the worldline of the particle in a frame in which the
particle appears to be moving to the right with speed v.

(c) Compute (∆s)2 between the birth and death of the particle in each frame of reference.
What can you conclude?

The geometry of spacetime Of course, by defining an invariant interval (∆s)2 akin to
the invariant distance interval in flat space we are making a statement about the fundamental
geometry of spacetime. In the same way that flat, Euclidean space is defined by the fact that
distances are computed using (3.5), the spacetime of special relativity is defined by the fact
that “distances” in spacetime are computed using (3.15). In direct analogy with (3.6), we can
define the invariant interval between two infinitesimally close points in spacetime by replacing
the ∆(somethings) with d(somethings), defining the line element as

ds2 = −cdt2 + dx2 + dy2 + dz2 (3.20)

The spacetime defined by the line element (3.20) is called Minkowski spacetime, and it is the
four-dimensional version of flat Euclidean space R3 that is compatible with special relativity.
We often say that Minkowski spacetime has 3+1 dimensions, to emphasize the point that there
are three space directions and one time direction.89

——— End Lecture 10.

This is a bit of a peculiar space, since we’ve seen that distinct events can be separated by
zero distance ∆s = 0. Events separated by (∆s)2 = 0 are said to be lightlike separated (or also
called null separated), since you can reach from one to the other with a light ray. More generally,
we call two events with separation (∆s)2 < 0 so that one sits within the light cone of the other
to be timelike separated. Two events that are timelike separated can be causally connected;

8 Also: while it might not be obvious with the funny minus sign, Minkowski spacetime is flat – it has zero
curvature. (Relatedly, the fastest way to get between two points on a spacetime diagram is with a straight line!)
General relativity is the subject that deals with more general curved spacetimes, which result from accounting
for accelerating frames of reference.

9 Note: Kunstatter-Das has a nice discussion on p. 107-108 of visualizing events that are separated by the
same proper time or proper distance on a spacetime diagram. In Euclidean space, points that are the same
distance from the origin lie on a circle, while in Minkowski spacetime, points that are the same proper time or
proper distance from the origin lie on hyperbolas.
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one can cause the other, since I can send out information at (or less than) the speed of light to
reach from one to the other. On the contrary, events with (∆s)2 > 0 that therefore sit outside
each others’ lightcones are said to be spacelike separated. Events that are spacelike separated
cannot be causally connected – even information traveling at the speed of light cannot be sent
between them!

Exercise 3.7

Show that if two events are spacelike separated, there is a Lorentz frame in which they
are simultaneous, while if two events are timelike separated, there is no Lorentz frame in
which they are simultaneous. You may restrict to just 1 spatial dimention, (ct, x).

(This is why events that are spacelike separated cannot be causally connected, while
those that are timelike separated can be – two events that can happen simultaneously can’t
influence one another!)

3.5 Lorentz transformation as symmetries of nature

The same way that classical physics is invariant under the isometries of flat space, special
relativity should be invariant under the isometries of Minkowski spacetime. In this subsection,
we will describe this isometry group, and understand the 4-vectors that it acts on.

The group of Lorentz transformations Recall that in our discussion of distance in flat 3d
space, we saw that requiring

d2 = (∆x)2 + (∆y)2 + (∆z)2

be invariant under a transformation

x⃗→ x⃗′ = Ox⃗+ a⃗

restrictedO to an orthogonal matrix (an element of the orthogonal groupO(3)), and a⃗ a constant
vector (a member of the group of translations of 3d space). The Euclidean group consists of
O(3) along with the group of translations, which act on 3-vectors (x, y, z).

We have seen that the interval ds2 defined in (3.20) is the measure of distance in Minkowski
spacetime which is invariant under Lorentz transformations (as you explicitly verified in Exer-
cise 3.5). As we will now describe, these transformations form a group, which act on vectors of
both space and time that we will call four-vectors.

It is natural that the coordinates of an event in spacetime require four components rather
than three: the three components of space, and the component involving time. The coordinates
of an event in spacetime are then given by 4-vectors which label these coordinates. We can
denote the components of a 4-vector X as follows:

Xµ =


ct
x
y
z

 , µ = 0, 1, 2, 3 (3.21)

We are using an index rotation where Greek indices (like µ) run from µ = 0 to µ = 3; the 1, 2, 3
components are the usual spatial 3-vector, while the 0-component is the time component ct,
normalized so that all components have the same units. Xµ then denotes the four components
of the column vector, with X0 = ct, X1 = x, X2 = y, and X3 = z.
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How do we compute the invariant distance between two points described by 4-vectors Xµ
a

and Xµ
b , with displacement ∆Xµ = Xµ

b − Xµ
a ? In terms of the components of the 4-vectors

we’ve already learned to use (3.15),

(∆s)2 = −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

We can express this as an inner product of the 4-vector ∆Xµ as follows:

(∆s)2 = (∆X)T


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∆X =
(
c∆t ∆x ∆y ∆z

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




c∆t
∆x
∆y
∆z


= −(c∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 ✓

This formula should be compared with (3.1); in flat Euclidean space, the inner product of three-
vectors was just computed with (∆s)2 = x⃗T x⃗, whereas in 4d Minkowski space, we have an extra
matrix insertion in the middle. In other words, we can interpret the invariant distance in special
relativity as an inner product of 4-vectors, as long as we also include the matrix

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


in the definition of the inner product, ensuring that the 0-th components of the 4-vectors acquire
the extra minus sign. The invariant distance is computed as the inner product10

Minkowski: (∆s)2 = ∆X ·∆X ≡ (∆X)T η∆X =
3∑

µ,ν=0

(∆Xµ)T ηµν∆X
ν

In the last equality we are using an index notation: an object like Xµ with a single index
µ is a 4-vector with four components running over µ = 0, 1, 2, 3, while an object with two
indices like ηµν is a 4 × 4 matrix with rows labeled by µ = 0, 1, 2, 3 and columns labeled by
ν = 0, 1, 2, 3, so that when we do the sums over repeated indices we are explicitly writing out the
matrix multiplication. Explicitly: η00 = −1, while η11 = η22 = η33 = 1, and every off-diagonal
component of η is 0 (η01 = η10 = η12 = · · · = 0), so that writing out the matrix multiplication
in index notation yields:

3∑
µ,ν=0

(Xµ)T ηµνX
ν = (X0)T η00X

0 + (X1)T η11X
1 + (X2)T η22X

2 + (X3)T η33X
3

= −(ct)2 + x2 + y2 + z2

More generally, computing (∆s)2 = X ·X computes the invariant distance between the point
X in spacetime and the origin.

The 4 × 4 matrix η (the Greek letter eta) is called the Minkowski metric. This metric
defines the geometry of spacetime: it tells us the right way to compute the inner products
of 4-vectors so that we can compute distances (∆s)2 or ds2 that are invariant under Lorentz
transformations. By contrast, the metric of Euclidean space is just the identity matrix,

Euclidean: (∆s)2 = ∆x⃗ ·∆x⃗ ≡ (∆x⃗)T1∆x⃗ = (∆x⃗)T∆x⃗

10 In this entire section, the symbol · will denote inner product, not group multiplication. This should not
cause confusion in the context of special relativity since all groups we will discuss are matrix groups which act
by matrix multiplication, and we don’t need an extra symbol for matrix multiplication. Apologies..
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so we didn’t bother to write it in our discussion of Euclidean space. Note carefully that we are
using a notation where the inner product · of 3-vectors just means the usual inner product (i.e.,
inserting the identity matrix), while the inner product · of 4-vectors requires the insertion of the
Minkowski metric η. The general statement is that in some n-dimensional space characterized
by some n× n metric g, the right way to take an inner product in that space requires inserting
metric.

Now that we’ve properly defined the spacetime that Lorentz transformations act on – (3+1)-
dimensional Minkowski spacetime, with coordinates parameterized by 4-vectors – we are ready
to represent the Lorentz coordinate transformations by matrices that act on these 4-vectors.
The Lorentz transformation can be thought of as a 4 × 4 matrix, conventionally called Λ (the
capital Greek letter Lambda), that transforms the spacetime coordinatesXµ in frame F to other
coordinates X ′µ in frame F ′. Consider, for example, a boost by velocity v in the x-direction.
The Lorentz transformation (3.13) can be written with the matrix

Λ =


γ −γ v

c 0 0
−γ v

c γ 0 0
0 0 1 0
0 0 0 1

 (3.22)

so that in matrix notation, ΛX = X ′:

ΛX =


γ −γ v

c 0 0
−γ v

c γ 0 0
0 0 1 0
0 0 0 1




ct
x
y
z

 =


γ
(
ct− v

cx
)

γ (x− vt)
y
z

 = X ′

This is just a fancy way of writing the Lorentz transformation (3.13). An equivalent way to
write this expression is in index notation,

3∑
ν=0

ΛµνX
ν = (X ′)µ

where Λ00 = γ, Λ01 = −γ v
c , Λ10 = −γ v

c , Λ11 = γ, Λ22 = Λ33 = 1, and all other components of
Λ are zero.

The inverse of the Lorentz transformation is simply given by the inverse matrix; in terms of
the matrices, we can write

ΛX = X ′ ⇒ (Λ−1Λ)X = Λ−1X ′ ⇒ X ′ = Λ−1X

Λ−1 =


γ γ v

c 0 0
γ v
c γ 0 0
0 0 1 0
0 0 0 1

 (3.23)

This equation is the compact matrix version of the Lorentz transformation from the unprimed
frame to the primed frame, which as expected coincides with taking v → −v.

Exercise 3.8

Write out all the terms in the following sums, substituting (X0, X1, X2, X3) = (ct, x, y, z):

(a)
∑3

µ=0 VµX
µ, where Vµ is a collection of four arbitrary numbers.

(b)
∑3

ν=0MµνX
ν , where Mµν is a collection of 16 arbitrary numbers. Note that since µ
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is an unsummed (“free”) index, you will need to write what this sum is for each of
µ = 0, 1, 2, 3.

Lorentz transformations leave the metric invariant Now we can really answer the ques-
tion: why are Lorentz transformations given by the particular matrices Λ? In other words, what
is the condition for a 4× 4 object Λ to be a Lorentz transformation?

The Lorentz transformations are defined to be precisely those 4× 4 matrices that leave the
inner product invariant:

X ′ ·X ′ = X ·X , X ′ = ΛX (3.24)

Using the definition of the dot-product in Minkowski space, the left-hand-side of the equation
evaluates to,

(ΛX) · (ΛX) = (ΛX)T η(ΛX) = XTΛT ηΛX

while the right-hand-side is equal to X ·X = XT ηX. Therefore, we see that (3.24) is true when
Λ obeys the matrix equation,

ΛT ηΛ = η (3.25)

This equation should be taken as the fundamental definition of a Lorentz transformation:
Lorentz transformations leave the metric η (in the sense of (3.25)) invariant, which leads to
the invariant distance formula.

(3.25) is the condition for a matrix Λ to be a Lorentz transformation. We can verify explicitly
that this is true for the matrix (3.22):

ΛT ηΛ =


γ −γ v

c 0 0
−γ v

c γ 0 0
0 0 1 0
0 0 0 1




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




γ −γ v
c 0 0

−γ v
c γ 0 0

0 0 1 0
0 0 0 1



=


γ −γ v

c 0 0
−γ v

c γ 0 0
0 0 1 0
0 0 0 1




−γ +γ v
c 0 0

−γ v
c γ 0 0

0 0 1 0
0 0 0 1



=


−γ2 + γ2(v2/c2) 0 0 0

0 −γ2(v2/c2) + γ2 0 0
0 0 1 0
0 0 0 1

 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = η ✓

where we used γ2 = 1/(1− v2/c2) to simplify in the last part. In other words, Lorentz transfor-
mations are the transformations of spacetime that preserve the Minkowski metric, in precisely
the same way that the orthogonal group O(3) are the transformatiosn of 3d space that pre-
serve the Euclidean (identity) metric. These transformations form a group, the group of all
distance-preserving maps (isometries) of Minkowski spacetime that leave the origin fixed.

The set of Lorentz transformations satisfying (3.25) forms a matrix group called the Lorentz
group, which we can show by verifying that matrices defined by the property (3.25) satisfy the
four group properties:
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• Closure: Consider the product of two Lorentz transformations Λ1 and Λ2, where each of
Λ1 and Λ2 obey (3.25), so ΛT

1 ηΛ1 = η and same for Λ2. Then, the product obeys

(Λ1Λ2)
T η(Λ1Λ2) = ΛT

2 Λ
T
1 ηΛ1Λ2 = ΛT

2 (Λ
T
1 ηΛ1)Λ2 = ΛT

2 ηΛ2 = η ✓

where we used (AB)T = BTAT . So, the product of two Lorentz transformations is also a
Lorentz transformation.

• Associativity: Matrix multiplication is associative, done.

• Identity: The identity of a matrix group is always the identity matrix, in this case the
4× 4 matrix with 1’s on the diagonal and 0’s elsewhere, which satisfies Λ1 = 1Λ = Λ for
any matrix Λ.

• Inverse: The inverse of an element of a matrix group is the inverse matrix; Λ−1 is the
inverse matrix to Λ. For instance, in the specific case of Λ being given by (3.22) its inverse
is (3.23), which just corresponds to boosting with −v rather than v.

Note that in identifying Lorentz transformations with a matrix group it was absolutely
crucial that the transformations were linear: they transform coordinates (ct, x, y, z) in one
frame to coordinates (ct′, x′, y′, z′) in another frame linearly, so that the system of equations
only depend on single powers of (ct, x, y, z) (rather than quadratic powers, etc.). If this weren’t
the case, we wouldn’t be able to package them into linear matrices.

——— End Lecture 11.

Classes of Lorentz transformations The general solutions to (3.25) fall into two classes.
The first class is familiar: they are solutions of the form

Λ =


1 0 0 0

0
0 O
0


where O is an element of O(3), the orthogonal group of 3× 3 matrices satisfying OTO = 1. If
you like, you can explicitly check that ΛT ηΛ = η for this class of Λ:

1 0 0 0

0
0 OT

0




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0

0
0 O
0

 =


1 0 0 0

0
0 OT

0




−1 0 0 0

0
0 O
0

 = η

where we used OTO = η. The other solutions are the Lorentz boosts. The boost by v along
the x-axis is given by the matrix (3.22), while the boosts along the other directions y and z are
given by rearranging the components of the matrix so that they act in the right way: for a boost
by v⃗ = vxx̂, or vyŷ, or vz ẑ, with γ a function of v2 = |v⃗|2, the corresponding transformation
matrices are,

Λx =


γ −γ vx

c 0 0
−γ vx

c γ 0 0
0 0 1 0
0 0 0 1

 , Λy =


γ 0 −γ vy

c 0
0 1 0 0

−γ vy
c 0 γ 0

0 0 0 1

 , Λz =


γ 0 0 −γ vz

c
0 1 0 0
0 0 1 0

−γ vz
c 0 0 γ


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A general Lorentz transformation is given by composition of these three basis transformations,
keeping in mind that in these definitions γ in the first expression is a function of vx, γ in the
second expression is a function of vy, and so on.

Together, the Lorentz group is denoted O(1, 3) – the comma is meant to differentiate the time
component of the matrices with the three spatial components, since the time component has
the relative minus sign in the metric. It is composed of conventional rotations (3 parameters for
the 3 spatial axes), along with boosts (again, 3 parameters for boosts along the 3 spatial axes).
It is a non-abelian group, since general Lorentz transformations will not commute with one
another. This group leaves the origin fixed, but if we also include translations of spacetime by a
constant 4-vector Aµ, we arrive at the Poincaré group: the group of isometries of Minkowski
spacetime. A general Poincaré transformation of a 4-vector Xµ may be written

X ′ = ΛX +A , ΛT ηΛ = η , A = constant 4-vector

and is a 10-parameter group: 3 rotations associated to O(3), 3 boosts associated to the three
directions vx, vy, vz, and 4 translations for each direction of spacetime. The Poincaré group is
the fundamental symmetry group of nature. It is a non-abelian Lie group.

Rapidity A nice way to understand boosts is to think of them as (hyperbolic) rotations be-
tween the space and time directions. To illustrate this, let’s just focus on Lorentz transforma-
tions in 1 spatial direction, so that we only have to worry about 2×2 rather than 4×4 matrices
(O(1, 1) rather than O(1, 3) – the idea is the same when generalizing to 3 spatial dimensions).
A Lorentz transformation by speed v in the x-direction is described by the matrix,

Λ[v] =

(
γ −γv/c

−γv/c γ

)
(3.26)

A clever parameterization of this transformation is to define the rapidity φ in terms of v:

γ = coshφ ⇒ tanhφ =
v

c

where we used the hyperbolic trig identity cosh2 x− sinh2 x = 1, and tanhx = sinhx/ coshx to
express the ratio v/c in terms of hyperbolic tangent. The non-relativistic limit γ → 1 (v/c→ 0)
corresponds to φ→ 0, while the relativistic limit γ → ∞ (v/c→ 1) corresponds to φ→ ∞. In
this parameterization, (3.26) takes the form,

Λ[φ] =

(
coshφ − sinhφ
− sinhφ coshφ

)
(3.27)

You can compare this matrix to the standard 2d rotation matrix (2.8) in the x-y plane: it is quite
similar, with regular trigonometric functions replaced by hyperbolic trigonometric functions. In
the same way that rotation angles add upon composition, Rθ1Rθ2 = Rθ1+θ2 , rapidities φ add:

Λ[φ1]Λ[φ2] = Λ[φ1 + φ2]

Exercise 3.9

Using the matrix (3.27), show that Λ[φ1]Λ[φ2] = Λ[φ1 + φ2], so that rapidities add like
angles. It is in this sense that you can think of Lorentz boosts as rotations of space and
time.
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3.6 Conserved 4-vectors

So far we have concerned ourselves with how Lorentz transformations act on coordinate 4-
vectors, Xµ, where the index µ runs over 0, 1, 2, 3. We defined the coordinate 4-vector Xµ =
(ct, x, y, z) in the way that we did precisely because it transformed nicely under Lorentz trans-
formations, and because the inner product of the 4-vector with itself gave us a Lorentz-invariant
quantity, ds2 = dX · dX = dXT ηdX.

The world of relativistic physics is much richer, however, than just understanding how
coordinates transform, and it turns out that there are other types of 4-vectors that have exactly
the same transformation properties under Lorentz transformations! You might recognize a few
of them, for instance:

spacetime coordinates: Xµ = (ct, x, y, z)

spacetime divergence: ∂µ =

(
−1

c
∂t, ∂x, ∂y, ∂z

)
relativistic velocity: Uµ =

dXµ

dτ
= γ

dXµ

dt
= γ (c, ux, uy, uz)

relativistic energy-momentum: Pµ = mUµ =

(
E

c
, px, py, pz

)
, E = γmc2

relativistic current density: Jµ = (cρ, jx, jy, jz) , ρ = electric charge density,

j⃗ = electric current density

Each of these should be thought of as a column vector with 4 rows. Here we are using uppercase
quantities with Greek indices to denote 4-vectors, and lowercase quantities to denote spatial
3-vectors; for instance, we might use a shorthand Pµ = (E/c, p⃗).

A 4-vector V transforms under boosts by Lorentz transformations, as V → ΛV . For example,
consider the velocity 4-vector U for a particle that is moving with speed u⃗ in frame F . In a
frame F ′ moving with speed v in the horizontal direction, the 4-velocity is transformed as

U ′ = ΛU =


γv −γv v

c 0 0
−γv v

c γv 0 0
0 0 1 0
0 0 0 1




γuc
γuux
γuuy
γuuz

 =


γvγu

(
c− v

cux
)

γuγv (−v + ux)
γuuy
γu′uz

 =


γu′c
γu′u′x
γu′u′y
γu′u′z


where γu is the γ-factor that is a function of the velocity of the particle, γu = 1/

√
1− u⃗2

c2
, and

γv is the γ-factor that boosts between frames related by relative velocity v, γv = 1/
√

1− v2

c2
.

We can solve this system of equations for the velocity in the primed frame as follows. The first
equation allows us to solve for the γ-factor in the primed frame,

γu′c = γvγu

(
c− v

c
ux

)
⇒ γu′ = γvγu

(
1− vux

c2

)
Then, the second, third, and fourth equations simplify as:

u′x =
γuγv
γu′

(ux − v) =
ux − v

1− vux
c2

u′y =
γu
γu′

uy =
uy

γv
(
1− vux

c2

)
u′z =

γu
γu′

uz =
uz

γv
(
1− vux

c2

)
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which we recognize as precisely the Lorentz velocity addition formulas (see (3.14)).

Furthermore, the inner products of each of these 4-vectors with themselves defines a quantity
that is invariant under Lorentz transformations: for instance,11

∆X ·∆X = (∆s)2 the invariant interval

U · U = −c2 the speed of light

P · P = −(mc)2 energy momentum conservation

(3.28)

where we need to keep in mind that the inner product has a factor of the metric η hidden
inside it; P · P ≡ P T ηP , U · U ≡ UT ηU , etc. The right-hand-side of these expressions are all
quantities that you’ve already learned are measured the same in all inertial frames: the value
of the invariant interval; the speed of light; the rest energy of the particle mc2.

Actually, the situation is even better than this. Call an object with some number of spacetime
indices µ, ν, . . . that run over 0, 1, 2, 3 a Lorentz tensor. For example, any column 4-vector is a
single-index Lorentz tensor, while the metric ηµν and Lorentz transformation Λµν are examples
of two-index Lorentz tensors. (Switching from the column vector, matrix nomenclature to this
“tensor” nomenclature is useful because there are also examples of Lorentz tensors with even
more indices, which are kind of like higher-dimensional versions of matrices.) The statement
is: any time I can take inner products of Lorentz tensors in such a way that all indices are
contracted, so that the final outcome is a Lorentz scalar with no indices, that scalar is guaranteed
to be invariant under Lorentz transformations: all observers in different inertial reference frames
related by boosts will measure exactly the same value for that scalar. This is true for the inner
products we wrote in (3.28), but it is also true for any other scalar object you can construct
out of Lorentz tensors.12

Conservation of electric charge For example, consider the electric current 4-vector Jµ,
whose components are ρ (the charge density that satisfies ∇⃗ · E⃗ = ρ/ϵ0 in Gauss’ law) and j⃗
(the electric current density that satisfies ∇⃗ × B⃗ = µ0(⃗j + ϵ0∂tE⃗) in Ampere’s law). Taking
the 4-divergence of this 4-vector will always yields an invariant scalar, which one can check is
actually always equal to 0 in any frame of reference:

∂ · J = 0 (3.29)

Explicitly, this equation says:

∂ · J ≡ (∂)T ηJ =
(
−1

c∂t ∂x ∂y ∂z
)

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




cρ
jx
jy
jz

 = ∂tρ+ ∇⃗ · j⃗ = 0

This is literally the equation that states that electric charge is conserved in electromagnetism:
the rate of change of charge through a fixed volume is equal to the net current flowing through
the boundary of that volume; in more familiar integral form,

d

dt

∫
V
ρ dV = −

∫
∂V
j⃗ · ds⃗

11 Apologies, I left off the minus signs on two of these expressions in lecture!
12 The general statement is that Lorentz tensors transform under Lorentz transformations so that each Lorentz

index ν = {0, 1, 2, 3} is contracted with a Lorentz transformation matrix Λµν . To be careful about index contrac-
tion for higher-index tensors it is useful to define a notion of “lower” and “upper” indices that can be raised /
lowered by the metric, to keep track of when we need to insert η in summing over the indices. Since in these notes
we have only needed to learn how to act on column 4-vectors and take inner-products (we haven’t yet encountered
any 2- or higher index tensors that actually transform under Lorentz transformations (although see (3.33)) – note
that η is invariant under Lorentz transformations), we haven’t bothered with this extra complication.
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Conservation of 4-momentum A nice application of this idea is to conservation of energy
and momentum in special relativity. In Physics 200, you learned that the relativistic momentum
of an object of rest mass m and velocity u⃗ that is conserved in all inertial frames is p⃗ = γumu⃗.
You also learned the extremely useful equation that by combining the definitions of a particle’s
relativistic energy E = γumc

2 and momentum p⃗ = γumu⃗, they satisfy the relation

E2 = p2c2 +m2c4

where p2 = p⃗ · p⃗ = p2x + p2y + p2z. Now we can understand that this equation follows naturally
from the invariant inner product of 4-momentum. The 4-momentum of a massive particle that
is traveling with relativistic 4-velocity U is given by

Pµ = mUµ = mγ (c, ux, uy, uz) =

(
E

c
, px, py, pz

)
where we have equated the timelike component P 0 of the particle’s momentum with its total
relativistic energy E/c, so that indeed with this definition E = γmc2 (and of course px = γmux,
and so on). The conservation of relativistic energy and momentum is now packaged together
into the conservation of energy-momentum, via conservation of the 4-vector P . Under a Lorentz
transformation, P → P ′ = ΛP , and energy-momentum is conserved in the primed frame just
as well as in the unprimed frame.

Taking the dot product of P with itself yields

P · P = P T ηP =
(

E
c px py pz

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




E
c
px
py
pz

 = −E
2

c2
+ p⃗2 .

We have claimed that this should equal a quantity that is invariant under Lorentz transforma-
tions, so is the same in all frames. Therefore, we might as well compute it in the rest frame of
the particle P = (mc, 0, 0, 0). In this frame,

P · P = −m2c2

But since the inner product is invariant, we can equate it to the general equation valid in any
frame,

−m2c2 = −E
2

c2
+ p⃗2 ⇒ E2 = p⃗2c2 +m2c4

reproducing the frame-invariant relation you learned about in Physics 200. This is the fun-
damental equation that tells us that in relativity, mass can be converted into energy and vice
versa.

What about massless particles? Massless particles evidently obey P · P = 0, so that their
4-momentum is null (along the path of a light ray). Here we are using the same definition of
null that we used previously: a null vector V satisfies V · V = 0, much as a null coordinate
vector X satisfies dX · dX = ds2 = 0. This fact clarifies one of our original postulates of special
relativity, that the speed of light is the same for all inertial frames. Why is the propagation
of light singled out for special treatment? The answer is that the photon – the particle that
makes up light – is massless. Any massless particle must travel at the speed of light, obeying
the dispersion relation E = pc, while all massive particles must go slower.
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Exercise 3.10

Photons are massless particles whose 4-momentum will generally take the form

Pµ = E/c (1, ˆ⃗p )

where ˆ⃗p is a unit vector in the direction of the particle’s motion. (This definition is
constructed to satisfy P · P = 0 for a massless particle, since ˆ⃗p · ˆ⃗p = 1). We also know
from quantum mechanics that a photon has energy E = hc/λ, for λ the wavelength of the
associated electromagnetic wave.

Let λ be the wavelength of the light in the frame where the light source is at rest. By
acting with a Lorentz transformation on P , determine the wavelength λ′ that an observer
in a frame F ′ moving with speed v away from the light source will observe. You may
assume that both the light and the relative speed v are directed along the x-axis.

——— End Lecture 12.

The relation between symmetry and conservation As a comment, we have seen that
by understanding the isometries of Minkowski spacetime and developing special relativity in
a way that maximally utilizes these symmetries, it is straightforward to identify conservation
laws. The general statement (which follows from Noether’s theorem, to be discussed in the next
section first in the context of classical mechanics) is that for every continuous symmetry of a
system, there is an associated conserved quantity. In the case of special relativity, there are 10
continuous spacetime symmetries corresponding to the 10 parameters of the Poincaré group.
The associated 10 conserved quantities are: angular momentum (3, related to spatial rotations),
spatial momentum (3, related to spatial translations ), energy (1, related to time translations),
and the three components of the velocity of the center of mass (3, related to boosts). We will
return to this point of view in the context of Noether’s theorem.

3.7 Covariant formulations of classical mechanics and electromagnetism

We will end this section on special relativity with some discussion for how Newtonian physics
and electromagnetism can be formulated in a way that is compatible with special relativity.

Newton’s law in covariant form The centerpiece of pre-relativity classical physics is New-
ton’s second law, F⃗ = ma⃗. We have already seen that this law holds for Galilean relativity,
but is not invariant under Lorentz transformations. One should expect that the analogous law
that holds in special relativity should involve 4-vectors, and indeed, we are now in a position to
write the relativistically-compatible version of Newton’s second law:

Fµ =
dPµ

dτ
= γ

dPµ

dt
(3.30)

where Fµ are the components of a 4-vector force, defined in terms of the standard 3-spatial
components f⃗ of the force as:

Fµ =


F 0

γfx
γfy
γfz


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With this definition, we see that the spatial components of Newton’s equation actually agree
with the form that we’re used to: in a frame F , dp⃗

dt = f⃗ , where p⃗ is the relativistic spatial
momentum. Meanwhile, the time component is related to the rate of change of energy with
time:

F 0 = γ
dP 0

dt
=
γ

c

dE

dt
. (3.31)

A first pass at covariant electromagnetism The reason that (3.30) is rarely used in
relativistic physics is because most of the forces we come across in classical physics (including
gravity!) are not valid in the context of special relativity where all frames must be inertial –
they require the formalism of general relativity. An exception to this rule is the electromagnetic
force. This is because Maxwell’s laws governing the behavior of electric and magnetic fields are
already compatible with special relativity.

Consider a particle of electric charge q moving with velocity u⃗ in some inertial frame of
reference. The electromagnetic force on this particle is given by the so-called Lorentz force, f⃗ =

q
(
E⃗ + u⃗× B⃗

)
. The relativistic formulation of this force arises from identifying the following

electromagnetic 4-vector force:

F = −qGηU ↔ Fµ = −q
3∑

ν,ρ=0

GµνηνρU
ρ (3.32)

where U is the 4-velocity of the particle, η is the metric, and Gµν is a 2-index tensor (4 × 4
matrix) called the electromagnetic field strength tensor, which contains the electric and
magnetic fields:

Gµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


Doing out the matrix multiplication in (3.32), the expression reads:

Fµ =

(
F 0

γf⃗

)
=

(
qγ
c E⃗ · u⃗

qγ
(
E⃗ + (u⃗× B⃗)

) )

The spatial components of this equation yield precisely the spatial components of the 3-dimensional

Lorentz force, f⃗ = q
(
E⃗ + u⃗× B⃗

)
. Meanwhile, the time component gives the rate of work done:

using (3.31), we identify

F 0 =
γ

c

dE

dt
=
qγ

c
E⃗ · u⃗ ⇒ dE

dt
= qE⃗ · u⃗

which is indeed the power.

The electromagnetic field strength tensor Gµν (usually conventionally called Fµν , but we are
using the letter G to not confuse it with the force vector that we are denoting with an F ) is the
nice, Lorentz-covariant way to package the electric and magnetic fields into one object. This is
necessary because in different frames of reference, charges that appear stationary in one frame
will be moving in another, so that the electric and magnetic fields generated by the particle
will be different! By packaging everything into a tensor, there is a straightforward algorithm
for how to transform the E and B fields in one frame to those as measured in another frame,
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by acting on the tensor Gµν with Lorentz transformations. The rule for Lorentz-transforming
a 2-tensor like Gµν between frames is as follows:

G′ = ΛGΛT (3.33)

We need 2 copies of the Lorentz transformation, one for each index. Note that this rule is
compatible with our identification of the force 4-vector (3.32); since G as a 2-tensor transforms
as G→ ΛGΛT and U as a 4-vector transforms as U → ΛU , the right-hand-side transforms as

GηU → (ΛGΛT )η(ΛU) = ΛG(ΛT ηΛ)U = Λ(GηU)

where we used the group property ΛT ηΛ = η. Therefore, this whole expression just transforms
like a 4-vector with a single factor of Λ, as it must since it is identified with a 4-vector F that
transforms F → ΛF .

Furthermore, Maxwell’s equations can be very simply written in a Lorentz-covariant way
with this notation. For instance, 2 of the 4 of them are encapsulated by the matrix equations:

(∂)T ηG = µ0J
T ↔ ∂ ·G = µ0J

T (3.34)

In the following exercise, you will demonstrate that this matrix equation indeed yields Maxwell’s
equations.

Exercise 3.11

(a) Use the Lorentz transformation law (3.33) for the electromagnetic field strength
tensor to derive the electric and magnetic field components E⃗′ and B⃗′ in a primed
frame moving with speed v in the +x̂ direction relative to the unprimed frame.

(b) Show that two of Maxwell’s equations follow from (∂)T ηG = µ0J
T .

3.8 An introduction to General Relativity

• Richard Feynman gives a nice conceptual introduction to General Relativity in these
lectures.

• If you are interested in learning more about gravitational waves, I recommend Cam-
bridge Professor David Tong’s lecture notes on general relativity, especially section
5 “When Gravity is Weak” where he goes into some detail on the wave solutions to
Einstein’s equations both in vacuum and in response to an accelerating mass.

The consistency of special relativity relied on the existence of inertial frames of reference:
frames in which a particle at rest in it stays at rest if no force acts on it. In Newtonian
mechanics, gravity is regarded as a force. However, it turns out that gravity is distinguished
from all the other forces in a very important way: all massive particles, regardless of their
internal composition, follow exactly the same trajectory in a gravitational field. What this
means for us as experimentalists on Earth is that we can’t experimentally find the trajectory
of a particle that’s unaffected by gravity, and so can’t define an inertial frame at rest on the
Earth.

Consider the following example: imagine yourself on a uniformly accelerating rocket ship
in empty space, where there is no gravity. From your point of view inside the rocket, there
is a gravitational field inside the rocket: if I drop a ball, it accelerates downwards, much like
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dropping a ball on Earth. Just standing stationary in the ship, I have a weight equal to the force
required to keep myself accelerating along with the ship that’s proportional to my mass—just
as I do on Earth.

In fact, any experiment I could do in such a uniformly accelerating reference frame of ac-
celeration a is completely indistinguishable from the same experiments performed in a non-
accelerating reference frame situated in a uniform gravitational field in which the acceleration
due to gravity is g = −a. This is the (weak) principle of equivalence between gravity and ac-
celeration. Another way to put this is that an object’s inertial mass—the mass that measures
resistance to being accelerated by a force, mi = F/a— and gravitational mass—the degree to
which it’s affected by a gravitational field,mg = Fg/g—are the same. This observation, made by
Einstein in 1915, is the starting point for the theory of general relativity. General relativity
reduces to special relativity in the limit that gravitational effects become less important.

Einstein developed an ingenious way to deal with these accelerating frames: by replacing
the concept of gravitational force with the curvature of spacetime. The presence of a mass
causes a curvature of spacetime in the vicinity of the mass, and this curvature dictates the path
in spacetime that all objects must follow. As summarized by American theoretical physicist
John Wheeler, “Space tells matter how to move and matter tells space how to curve.” General
relativity consists of two parts: how matter affects spacetime and how spacetime affects matter.

In particular, the presence of mass leads to a nontrivial metric g of spacetime, so that the
invariant interval satisfies

ds2 = dX · dX = (dX)T g(dX)

Locally space should look like Minkowski space so that we recover special relativity. This means
that if we zoom in to very tiny distances, g = η so that the metric is approximately that of
special relativity, with differences being second order in the coordinates. More generally, g can
be quite complicated.

Einstein derived the equations of motion that tell us how the presence of matter allows us
to solve for the metric of spacetime g, encapsulating how the curvature of spacetime reacts to
matter. Einstein’s field equations take the form,

G̃µν = 8πGTµν (3.35)

where G̃µν is a 2-tensor that is a very complicated, quartic, function of the metric g involving
two derivatives of the metric (the tilde is meant to distinguish it from the field strength tensor
Gµν we introduced for electromagnetism); Tµν is a 2-tensor that encapsulates the effect of
the gravitational potential due to matter; and G is Newton’s gravitational constant. The field
equations (3.35) then constitute a set of complicated second order differential equations that can
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be solved for the metric. Once the metric is solved for, one can compute the paths of particles
in that spacetime by integrating up ds along a path. Particles will want to follow geodesics in
the curved spacetime, so the dynamics of particles follows from solving for the geodesics in a
spacetime with metric g. Of course, in the dynamical problem everything is time dependent –
as particles move, they tell spacetime how to curve according to (3.35), which then determines
the geodesics of the particles, and so on, in a feedback loop – so this is quite a complicated
system of equations! General relativists often rely heavily on numerics to solve these systems
of equations for the dynamics of stars, galaxies, etc.

Black Holes One famous example is the Schwarzschild metric, which describes the space
outside of a spherically symmetric object of mass M (for example, a star, or a black hole) by
the following invariant distance interval,

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
Here r is the radius away from the object and G, c are constants, so this solution depends on the
single parameter M . This solution follows solving (3.35) for g in the presence of a spherically
symmetric object of mass M sitting at the center of the coordinate system.

This is actually the unique spherically symmetric, asymptotically (at r → ∞) flat solution
to the vacuum Einstein equations. In particular, far away from the object at r → ∞, this metric
coincides with the usual Minkowski metric written in spherical polar coordinates:

ds2 → −c2dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
Closer to the star this metric describes how the space around a spherically symmetric object
warps.

There are two values of r where the Schwarzschild metric appears to go bad: it is singular
at r = 0 and at r = 2GM

c2
. The radius r = 2GM

c2
where the radial component of the metric

diverges is known as the Schwarzschild radius, and corresponds to the event horizon of a black
hole. While this radius is special for many reasons, it turns out that this is just a coordinate
singularity and not a true singularity of the spacetime, in the sense that a change of coordinates
gets rid of the singular behavior of the metric in this region. On the other hand, the r → 0
divergence is a true spacetime singularity, and a genuine feature of the black hole.

Gravitational waves The metric is not a static thing – it reacts to the presence of matter,
changing with time as matter moves throughout spacetime. One consequence of this is the
existence of gravitational waves. Massive accelerating objects disrupt spacetime in such a way
that ripples can propagate over long distances.

In a truly incredible feat of engineering decades in the making, LIGO (Laser Interferometer
Gravitational-wave Observatory) made the first detection of gravitational waves in 2015, for
which three members of the collaboration were awarded the 2017 Novel prize. They detected
tiny waves that were generated by two colliding black holes 1.3 billion light-years away. 1.3
billion light years ago (at roughly the time multicellular life was forming on Earth!) these black
holes collided, emitting an energy equivalent to three times the mass of the sun in the process
that was sent out in ripples of spacetime.

Gravitational waves are sourced by some event, but then propagate in the vacuum, which
amounts to solving Einstein’s equation (3.35) with 0 on the right-hand-side: G̃µν = 0. We
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decompose the metric into the flat Minkowski metric plus a small perturbation meant to describe
the ripple,

gµν = ηµν + hµν , |h| ≪ 1

We can describe the equation of motion obeyed by the perturbations h by expanding out
Einstein’s field equations to first order in h (yielding the “linearized” Einstein’s equations). In
this case the equation greatly simplifies to

(∂ · ∂)
(
hµν −

1

2
hηµν

)
= 0

This is a wave equation – it’s the 4-dimensional Laplacian −∂2t +∇2 acting on some field h =
(the combination of the perturbation h and metric η in parenthesis), and there are plane-wave
like solutions to it of the form:

hµν ≡ hµν −
1

2
hηµν = Re

(
Hµνe

−iωt+ik⃗·x
)

where Hµν is a polarization matrix, and the wave propagates at the speed of light c. A general
gravitational wave solution will consist of superpositions of these plane waves.

——— End Lecture 13.
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4 Classical Mechanics and Conservation Laws

Possibly helpful resources:

• MOST RECOMMENDED: A First Course on Symmetry, Special Relativity, and
Quantum Mechanics by Kunstatter and Das, Section 3.6 on Variational Mechanics
and Noether’s theorem.

• University of Cambridge Professor David Tong’s lecture notes on Classical Dynamics
are a nice additional resource, especially parts of Sections 2 and 4. Available at this
link.

4.1 Lagrangian Mechanics and the Principle of Least Action

Let us start by recalling the definition of the Lagrangian. Suppose we have a system of N
particles in one dimension, with coordinates xA where A = 1, . . . , N . (This discussion readily
generalizes to three dimensions, where we could take A = 1, . . . , 3N .) The particles have masses
mA and evolve in some potential U(x). Newton’s equations relate the derivative of the particles’
momenta to the gradient of the potential as

pA = mAẋ
A , ṗA = − ∂V

∂xA

where the dot denotes differentiation with respect to time, ẋ = dx/dt. The Lagrangian L is
a function of the positions xA and velocities ẋA of the particles, given by their kinetic energy
K(ẋA) = 1

2

∑
AmA(ẋ

A)2, minus their potential energy U(xA):

L(xA, ẋA) = K(ẋA)− V (xA) =
1

2

∑
A

mA(ẋ
A)2 − U(xA) (4.1)

The coordinates xA(t) parameterize an N -dimensional configuration space, C. (For a d-
dimensional system, there will be dN degrees of freedom and thus dN coordinates parameter-
izing the configuration space – but for now lets stick with d = 1.) A point in the configuration
space specifies a particular configuration of the system, namely, the positions of all N particles
at some moment in time. Time evolution is some curve, or path, in configuration space.

Suppose we know the initial positions of the particles at some initial time ti, and the final
positions at some final time tf . We consider all smooth paths xA(t) with these endpoints fixed:

xA(ti) = xAinitial , xA(tf ) = xAfinal

Of course, there the system only takes one path which evolves according to the equations of
motion from xAinitial to x

A
final. Which path does the system take?
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The answer is given by the following prescription. To each path xA(t), we assign a number
called the action:

S[xA(t)] =

∫ tf

ti

L
(
xA(t), ẋA(t)

)
dt (4.2)

In other words, take the Lagrangian (a function of the path xA(t) and its derivatives) evaluated
on that path, and integrate it between the initial and final times. The output is a number, the
action S. The action is therefore what we call a functional: an object which takes a function as
input and as output spits out a number, versus a function which takes a number as input and
spits out a number. The actual path of the system is given by the following theorem:

Theorem (Principle of Least Action): The path taken by the system is an extremum
of the action S, defined as in (4.2).

The principle of least action is one of the most important results in physics. At first glance
it seems highly non-intuitive, so let’s prove it. We can consider a given path xA(t) between the
fixed endpoints, and varying it slightly while leaving the endpoints fixed,

xA(t) → xA(t) + δxA(t) , δxA(ti) = δxA(tf ) = 0

We will first show that the path which extremizes the action under such a variation satisifies
the Euler-Lagrange equations. The change in the action is computed as:

δS = δ

[∫ tf

ti

L dt
]

=

∫ tf

ti

δL dt (since δxA(ti) = δxA(tf ) = 0)

=

∫ tf

ti

∑
A

(
∂L
∂xA

δxA +
∂L
∂ẋA

δẋA
)
dt (chain rule)

The second terms can be rewritten in such a way that we can integrate them by parts,∫ tf

ti

∂L
∂ẋA

d

dt
(δxA) dt =

∫ tf

ti

∂L
∂ẋA

d(δxA) =
∂L
∂ẋA

δxA

∣∣∣∣∣
tf

ti

−
∫ tf

ti

δxAd

(
∂L
∂ẋA

)

=
∂L
∂ẋA

δxA

∣∣∣∣∣
tf

ti

−
∫ tf

ti

δxA
d

dt

(
∂L
∂ẋA

)
dt

but the boundary terms vanish, since δxA(ti) = δxA(tf ) = 0. Substituting into δS, the expres-
sion then simplifies to

δS =

∫ tf

ti

∑
A

(
∂L
∂xA

− d

dt

(
∂L
∂ẋA

))
δxA dt

The action is an extremum if δS = 0 for all changes in the path δxA(t), which holds if and only
if the integrand is itself zero:

∂L
∂xA

− d

dt

(
∂L
∂ẋA

)
= 0 for each A = 1, . . . , N . (4.3)

These are the Euler-Lagrange equations.
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To finish the proof, we need to show that these equations are the same as the equations of
motion of the system. We can explicitly verify from (4.1) that:

∂L
∂xA

= −∂U(xA)

∂xA
,

d

dt

(
∂L
∂ẋA

)
=

d

dt

(
mAẋ

A
)
= ṗA

so that indeed, (4.3) exactly produces Newton’s equations, ṗA = −∂U/∂xA.

Some comments:

• This is an example of a variational principle, another example of which you saw around
(3.10) when computing geodesics in some space. There we saw that applying the calculus

of variations to a path of length L with fixed endpoints, L =
∫ Pf

Pi
ds =

∫ tf
ti
(ds/dt) dt, tells

you that the solution to the Euler-Lagrange equations with L replaced by the integrand
ds/dt extremizes the length of the path (the “action” in this case). Same concept here,
except the quantity we’re extremizing is S, and the integrand is the Lagrangian L.

• Does δS = 0 correspond to a minimum, maximum, or saddle point? Since L = K − U ,
we can always make S bigger by considering a very fast path with large kinetic energy (S
is not bounded from above!), so the true path is never a maximum. Then, the path is in
general either a minimum or a saddle point of S.

Exercise 4.1

By the variation δS we really mean

δS ≡ S [x+ δx(t)]− S[x(t)]

Explicitly compute the expression on the right for the Lagrangian of a single particle with
kinetic energy 1

2mẋ
2 moving in a potential U(x), only keeping terms that are first order in

the small change δx (namely, neglecting terms of order (δx(t))2 and higher in the Taylor
expansion). Show that setting δS = 0 leads to Newton’s equation for a particle moving in
a 1d potential.

Hint: you might find the discussion in section 3.6.1 of Kunstatter-Das useful.

We just showed that Newton’s equations are the same as the Euler-Lagrange equations,
so what did we gain by working with Lagrangian formalism? Practically speaking, we really
gained two useful features. Firstly, the Euler-Lagrange equations hold in any coordinate system.
Secondly, it is much easier to deal with constraints in the Lagrangian formalism. For complicated
systems with many degrees of freedom and possibly with constraints (like a bead forced to
move along a wire, or a mass attached to a rope), all one needs to do is write the Lagrangian in
whatever the most convenient coordinates are, and thereby obtain the Euler-Lagrange equations
of motion.

We can demonstrate the first point as follows. Let’s say we change coordinates from xA → qa,

qa = qa(x1, . . . , xN , t) (4.4)

We call the qa generalized coordinates; they can be any set of independent coordinates that
completely specify the system. For example, you might have in mind (in 2d) changing each par-
ticle’s coordinates from Cartesian to radial coordinates, so that for each particle r =

√
x2 + y2,
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and θ = arctan(y/x). Or, you might have in mind a general Euclidean transformation of the
form x→ q = Ox+a. You might even have in mind some coordinate change which also involves
time, for example by changing to a coordinate system that itself rotates in time. (This would
be a non-inertial frame!) In any case, by the chain rule we can write that for each coordinate
qa, the time derivative q̇a is given by,

q̇a =
dqa
dt

=
∑
A

∂qa
∂xA

ẋA +
∂qa
∂t

(4.5)

or inverting,

ẋA =
∑
a

∂xA

∂qa
q̇a +

∂xA

∂t
(4.6)

Let us now examine the Euler-Lagrange equations in these new coordinates. We have that

∂L
∂qa

=
∑
A

(
∂L
∂xA

∂xA

∂qa
+

∂L
∂ẋA

∂ẋA

∂qa

)

=
∑
A

(
∂L
∂xA

∂xA

∂qa
+

∂L
∂ẋA

∂

∂qa

(∑
b

∂xA

∂qb
q̇b +

∂xA

∂t

))

Meanwhile, the derivative of the Lagrangian with respect to q̇a is,

∂L
∂q̇a

=
∑
A

∂L
∂ẋA

∂ẋA

∂q̇a

(∂xA/∂q̇a is zero since we assume the coordinate change does not involve the velocities, so there
is only one set of terms in the chain rule for this case.) It is a useful fact that

∂ẋA

∂q̇a
=
∂xA

∂qa
,

or in other words that we can “cancel the dots” so to speak (verify this for yourself using (4.6)!).
Therefore, we can compute:

d

dt

(
∂L
∂q̇a

)
=

d

dt

(∑
A

∂L
∂ẋA

∂xA

∂qa

)

=
∑
A

[(
d

dt

∂L
∂ẋA

)
∂xA

∂qa
+

∂L
∂ẋA

(
d

dt

∂xA

∂qa

)]

=
∑
A

[(
d

dt

∂L
∂ẋA

)
∂xA

∂qa
+

∂L
∂ẋA

(∑
b

∂2xA

∂qa∂qb
q̇b +

∂xA

∂2qa∂t

)]

where we used (4.6) in the last line. Finally, we can evaluate the Euler-Lagrange equations in
the q coordinates. The terms involving the sum over b cancel, and we are left with:

∂L
∂qa

− d

dt

(
∂L
∂q̇a

)
=
∑
A

[
∂L
∂xA

− d

dt

(
∂L
∂ẋA

)]
∂xA

∂qa

This result says that if the Euler-Lagrange equations hold in the xA coordinate system (so
that everything in the [. . . ] on the right-hand-side vanishes), then they also necessarily hold
for every index a in the qa coordinate system (so that the left-hand-side vanishes). This proof
holds as long as our choice of coordinates is invertible, so that we can invert qa = qa(xA, t) to
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xA = xA(qa, t), which is true as long as the Jacobian of the transformation det(∂xA/∂qa) is
nonzero.

In addition to these practical reasons, there are two additional very good reasons to study
Lagrangian mechanics.

• All the fundamental laws of physics can be written in terms of an action principle, including
electromagnetism, special relativity, general relativity, and the standard model of particle
physics. For now we are focusing on classical Lagrangian mechanics, but later we will
discuss generalizations to some of these other cases.

• The Lagrangian formalism makes symmetries manifest! We will explore this idea in the
next few sections.

——— End Lecture 14.

4.2 The free particle Lagrangian from symmetry principles

Let us return to the general form of the Lagrangian for a particle of mass m,

L = K − U =
1

2
m ˙⃗x2 − U(x⃗) .

For a free particle in three dimensions, U = 0 and x⃗ = (x, y, z). You might wonder: can we
argue based on general principles that this is the free particle Lagrangian? Do we need to
already have known Newton’s laws? Why does the Lagrangian go like v2 rather than some
other power of v?

The answer is due to the symmetries of space and time, along with the assumption of the least
action principle. To see this, let us work (for simplicity) in Cartesian coordinates x⃗ = (x, y, z).
We make the following assumptions:

• Assumption 1: For a free particle, all points in space are equal (i.e. space is homogeneous).
In other words, the Lagrangian can’t depend on where, the place from which we measure
its progress: L(x⃗, ˙⃗x, t) → L( ˙⃗x, t). This is to say that the Lagrangian should be translation
invariant.

• Assumption 2: For a free particle, all points in time are equal (i.e. time is homogeneous).
In other words, the Lagrangian can’t depend on when, the time at which we start our
measurement: L( ˙⃗x, t) → L( ˙⃗x). This is to say the Lagrangian should be time-translation
invariant.

• Assumption 3: Space is isotropic (all directions are equal) – it should not depend on the
orientation of the coordinate system. Therefore, L can depend only on the magnitude of
the velocity and not its direction, L(| ˙⃗x|) = L(v), where v =

√
ẋ2 + ẏ2 + ż2.

• Assumption 4: We assume the principle of least action, so that the Euler-Lagrange equa-
tions (4.3) hold. For instance, take the x-direction, which leads to the equation of motion

d

dt

(
∂L
∂ẋ

)
=
∂L
∂x
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By Assumption 1, the right-hand-side = 0, since L is only a function of ẋ and not x itself.
Therefore,

∂L
∂ẋ

= constant in time ≡ cx

The same is true for the other directions; we ∂L/∂ẏ = some constant we will call cy, and
∂L/∂ż = some constant we will call cz.

We can use this conclusion to learn about the dependence of the particle’s motion on the
speed v. Using the chain rule,

dL(v)
dv

=
∂L
∂ẋ

dẋ

dv
+
∂L
∂ẏ

dẏ

dv
+
∂L
∂ż

dż

dv

= cx
v

ẋ
+ cy

v

ẏ
+ cz

v

ż

The only way that L could be a function of v only (and constants), is if cx ∝ ẋ, so that
ẋ is itself a constant; and similarly, cy ∝ ẏ is a constant, and cz ∝ ż is a constant. But

if ẋ, ẏ, and ż are all constants, then v =
√
ẋ2 + ẏ2 + ż2 is itself a constant of motion!

We conclude that not only can the Lagrangian of a free particle can only depend on the
magnitude of its velocity, but that the result will be motion with constant velocity. This
is the law of inertia: A free particle moves with constant speed.

• Assumption 5: The equations of motion should take the same form in all inertial frames of
reference; namely, the principle of Newtonian / Galilean relativity should hold. (Physics
should not depend on the physicist!) There is no preferred frame of reference, but instead
the laws of physics should be unchanged regardless of the frame.

Let us impose this last assumption on our Lagrangian L(v). In order to relate measurements
made in one frame of reference with those in another, we use the Galilean transformation
between frames. Let’s say that an observer in our original frame F tracks the free particle’s
motion with spatial coordinates (x, y, z) and time coordinate t, and speed v =

√
ẋ2 + ẏ2 + ż2.

An observer in frame F ′ which is moving at speed u in the positive x-direction relative to
F (for example, think an observer sitting on a train that is moving with constant speed u),
would track the free particle with spatial coordinates (x′, y′, z′), time coordinate t′, and speed
v′ =

√
(ẋ′)2 + (ẏ′)2 + (ż′)2. Assuming that the origins of these coordinate axes coincide, so that

(x, y, z) = (x′, y′, z′) = (0, 0, 0) at initial time t = t′ = 0, the Galilean transformation of the
coordinates between these frames is

x′ = x− ut , y′ = y , z′ = z , t′ = t.

so that the velocities transform

ẋ′ = ẋ− u , ẏ′ = ẏ , ż′ = ż ⇒ v2 = (v′)2 + 2ẋu− u2 = (v′)2 + 2uẋ′ + u2

(Without loss of generality, let’s actually consider L(v2) in this part, so that we don’t have to
deal with all the square roots – this is not necessary, just useful.) Then, we can see that the
Lagrangians in the two frames are related by,

L(v2) = L((v′)2 + 2uẋ′ + u2)

Since Galilean relativity should hold for small velocities as well as large ones, we can assume
that u is small and Taylor expand around u = 0:

L(v2) = L((v′)2 + 2uẋ′ + u2)

= L((v′)2) + ∂L((v′)2)
∂(v′)2

(2uẋ′ + u2) + . . .
(4.7)
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——— End Lecture 15.

So far so good. Now, in order that the two Lagrangians describe the same physics, and so
have the same equations of motion, we need that they differ by a total derivative with respect
to time:

L(v2)− L((v′)2) = d

dt
F (4.8)

The easiest way to see this is to add a total derivative to the Lagrangian, and show that the
variation of the action doesn’t change:

L′ = L+
d

dt
F ⇒ S′ = S + F

∣∣∣tf
ti

The action changes by a boundary term, but since all trial paths pass through the same end-
points ti and tf , this boundary term is a constant that doesn’t affect the variation δS. (A
straightforward but harder thing to show is that upon adding dF/dt to the Lagrangian, the
Euler-Lagrange equations are unchanged.)

In fact, from (4.7) we have that

L(v2)− L((v′)2) = ∂L((v′)2)
∂(v′)2

(2uẋ′ + u2)

=
d

dt

[
∂L
∂(v′)2

(2ux′ + tu2)

]
−
(
d

dt

∂L
∂(v′)2

)
(2ux′ + tu2)

For the right-hand-side to equal a total derivative in time for all small u, we need that d
dt

∂L
∂(v′)2 =

0 for all time, so that in particular, ∂L
∂(v′)2 is equal to a constant. This sets L(v′) proportional

to (v′)2.

We conclude that the free particle Lagrangian should be equal to a constant times the square
of the velocity, v2. That constant must have units of mass by dimensional analysis. Voila, the
free particle Lagrangian L ∝ mv2!

Of course, this still leaves some freedom: an overall scalar prefactor does not affect any of
the above conclusions, as long as the prefactor is not negative (or else the variation wouldn’t
produce the required minimum / saddle point in the action). We choose the prefactor of the free
particle to be written as m/2 to be consistent with our definition of the particle’s momentum
– otherwise we would simply be rescaling the mass of all particles by the same meaningless
prefactor. Furthermore, a shift by an overall constant L → L + a does not affect any of these
conclusions; we can conventionally take this overall constant to be zero.

4.3 Conservation laws and Noether’s Theorem

Conserved charges What is the condition for a quantity to be conserved in some physical
system? We mean that the value of that quantity stays constant – it doesn’t change with time
as the system evolves according to its equations of motion. Mathematically, the statement is as
follows: a function Q(qa, q̇a, t) of the coordinates qa, their time derivatives q̇a = dqa/dt, and the
time t is called a constant of motion, or conserved quantity, when Q remains constant along the
path followed by the system. This is true if the total time derivative of Q vanishes whenever
the qa(t) satisfies Lagrange’s equations,

dQ

dt
= 0 ⇔ Q is conserved

74



Explicitly using the chain rule, this implies the following property of Q:

dQ

dt
=
∂Q

∂q
q̇ +

∂Q

∂q̇
q̈ +

∂Q

∂t
= 0

We will call Q satisfying these features a conserved charge.

A very common example is as follows. Suppose that L is independent of a particular coor-
dinate qa. Then,

∂L
∂q̇a

is a conserved quantity. Why? Because of the Euler-Lagrange equations:

d

dt

∂L
∂q̇a

=
∂L
∂qa

= 0 if L doesn’t explicitly depend on qa

We call the quantity ∂L/∂q̇a the canonical / generalized momentum associated to the coordinate
qa, which we call pa:

∂L
∂q̇a

≡ pa generalized momentum

So the statement is that whenever the Lagrangian does not explicitly depend on one of the
coordinates qa, that coordinates generalized momentum pa defines a conserved charge of the
dynamics.

For instance, a particle moving in some potential U(x⃗) with kinetic energy 1
2m

˙⃗x2 has general-

ized momentum p⃗ = m ˙⃗x, which is just the linear momentum of the particle. The Euler-Lagrange
equations relate the time derivative of this momentum to the force exerted on the particle, which
is the gradient of the potential,

dp⃗

dt
= ∇⃗U

If the potential does not depend explicitly on one of the coordinates xi, then the right-hand-side
is zero and its momentum pi = mẋi is conserved.

Symmetries of the Lagrangian and Noether’s theorem At the level of the Lagrangian,
a symmetry is a transformation that only changes the Lagrangian up to a total derivative with
respect to time:

L → L+
dF

dt

Why? Then the action then only changes by a constant boundary term,

S → S +

∫ tf

ti

d

dt
F = S + F (tf )− F (ti)

which cannot affect the equations of motion we derive from varying that action. (Recall that
we are considering a path between fixed endpoints where the variation of the endpoints is fixed,
so these extra boundary terms are just equal to zero.)

Mathematician Emmy Noether made a remarkable observation in 1918 which connects sym-
metries of the Lagrangian with conserved quantities. Her theorem can be stated as follows:

Noether’s theorem: every continuous symmetry of the Lagrangian is associated to a con-
served quantity.
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Noether’s theorem explains and in some cases predicts the existence of fundamental con-
served quantities in nature. First we will prove this theorem in order to understand the general
connection between conserved quantities and symmetries; then we will apply it in a number
of examples. The proof will follow the following steps: (1) we will do a transformation that
changes the coordinates by some infinitesimal amount which we can explicitly check is a sym-
metry of the Lagrangian. (2) We will calculate how the Lagrangian changes as a result of the
transformation, using general principles and Noether’s theorem. And finally (3) By relating the
results of (1) and (2), we will identify a conserved quantity associated to the symmetry.

To start with part (1): consider a transformation of the generalized coordinates of the form,

qa(t) → qa(t) + δqa (4.9)

where the change δqa could in principle depend on the other coordinates. Importantly, we
assume that this is a continuous transformation, in that we can make δqi as small as we like
until the transformation is infinitesimally small. (So in general, in our explicit examples below
we will identify δqa with some function fa(qa) of the coordinates, times some real parameter ϵ
that can be tuned to zero in order to consider the infinitesimal version of the transformation.)

This transformation is a symmetry of the Lagrangian and therefore won’t affect the equations
of motion, if it only changes the Lagrangian by a total derivative,

δL ≡ L(qa + δqa, q̇a + δq̇a, t+ δt)− L(qa, q̇a, t) =
dF

dt
⇒ transformation is a symmetry of L

(4.10)

Of course, F might just be zero, so that the Lagrangian is completely invariant under the
transformation (4.9).

(2) On the other hand, we can check the change in the Lagrangian δL due to this transfor-
mation via the chain rule:

δL =
∑
i

(
∂L
∂qa

δqa +
∂L
∂q̇a

δq̇a

)
+
∂L
∂t
δt (4.11)

The last term is only pertinent if the Lagrangian has an explicit dependence on time, and/or if
the transformation explicitly involves the time coordinate so that t→ t+ δt – while this is not
typical, later we will consider a special case of a transformation in time so we have included the
term for completeness. The other terms can be rewritten in a nice way as follows. The second
term is proportional to the generalized momentum pa = ∂L/∂q̇a. In the first term we can use
the Euler-Lagrange equations to rewrite

∂L
∂qa

=
d

dt

∂L
∂q̇a

=
dpa
dt

So, this expression actually takes the form of almost a total derivative:

δL =
∑
a

(ṗaδqa + paδq̇a) +
∂L
∂t
δt =

d

dt

∑
a

paδqa +
∂L
∂t
δt (4.12)

On to step (3). Suppose that either the Lagrangian does not explicitly depend on time,
and/or the transformation does not explicitly involve the time coordinate, so that in either
case the last term is zero. Comparing (4.11) with (4.10), we see that we can identify that the
following total time derivative vanishes,

d

dt

(∑
a

paδqa − F

)
= 0 .
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In other words, the quantity in parenthesis is conserved! This quantity is the conserved charge
associated to the symmetry transformation (4.9),

Q =
∑
a

paδqa − F is conserved ⇔ dQ

dt
= 0 (4.13)

Example: Spatial translations & the homogeneity of space: As a first exploration of
this theorem, let’s consider the example we studied around (3.4): we have two masses, with a
force acting between them directed from x⃗2 → x⃗1. (This might correspond, for instance, to the
gravitational force between the two masses, or the Coulomb force between two massive charged
particles, or to some other general constant force that is a function of the distance r = |x⃗1−x⃗2|).
The Lagrangian takes the form

L =
1

2
m1

˙⃗x21 +
1

2
m2

˙⃗x22 − U(|x⃗1 − x⃗2|) (4.14)

In a previous lecture we verified explicitly that Newton’s equations for this system are invariant
under the spatial translations of all vectors by the same constant amount,

x⃗i → x⃗i + a⃗

for a⃗ some constant 3-vector, where here i = 1, 2 labels the two particles.

Accordingly, the Lagrangian for this system has a symmetry under spatial translations. To
identify the conserved quantity in Noether’s theorem, it is useful to rewrite the transformation
in the way that we derived the theorem, as,

x⃗i → x⃗i + δx⃗i , δx⃗i = ϵn⃗ (4.15)

where n⃗ is a constant vector pointed in an arbitrary direction, and ϵ is some real parameter
that we can tune to zero. (In other words we are doing a redundant rewriting a⃗ = ϵn⃗ for the
convenience of identifying an explicit parameter ϵ that can be tuned to zero as we consider
smaller and smaller translations.) We can explicitly check that the transformation (4.15) leaves
the Lagrangian invariant,

δL = L(x⃗i + δx⃗i, ˙⃗xi + δ ˙⃗xi)− L(x⃗i, ˙⃗xi) = 0

This follows from the fact that ˙⃗n = 0 so that the kinetic terms don’t change, and the constant
shift by ϵn⃗ cancels out of the difference in the potential. Thus, spatial translations are a
symmetry of the Lagrangian, with F = 0. (And of course, the transformation we are considering
does not affect time so both ∂L/∂t = 0 and δt = 0 in (4.12).)

Turning the crank with Noether’s theorem, this symmetry leads to the following conserved
charge:

Q =

2∑
i=1

p⃗i · δq⃗i = ϵ (p⃗1 + p⃗2) · n⃗

where p⃗1 and p⃗2 are the linear momenta of the particles, p⃗i = mi
˙⃗xi, so that p⃗1 + p⃗2 is the total

linear momentum of the 2-particle system. Thus, this charge is simply equal to the total linear
momentum in the direction n⃗. Since this is a constant of motion for any arbitrary constant
vector n⃗, we conclude that the total momentum p⃗1 + p⃗2 is conserved.

This result readily generalizes to a system of N particles whose potential depends only on the
distances of the various particles to one another: the general statement is that the invariance
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of the Lagrangian under spatial translations – which will hold true whenever the system is
spatially homogeneous – implies conservation of the total linear momentum.

——— End Lecture 16.

Example: Rotations & the isotropy of space: Recall that we also have previously verified
that the equations of motion for this 2-particle system are invariant under arbitrary coordinate
rotations, where the x⃗i are rotated by the same amount. Such rotations are enacted by or-
thogonal transformations x⃗i → Ox⃗i for O a matrix in the group O(3). We can verify that the
Lagrangian (4.14) is invariant under this transformation, so that the Lagrangian is symmetric
under the group O(3). This is straightforward to show: we have already verified that this
transformation leaves the potential invariant, since13

|x⃗1 − x⃗2| → |O(x⃗1 − x⃗2)| = |x⃗1 − x⃗2| .

It will also leave the kinetic terms invariant since

˙⃗x21 = ( ˙⃗x1)
T ˙⃗x1 → (O ˙⃗x1)

TO ˙⃗x1 = ( ˙⃗x1)
TOTO ˙⃗x1 = ˙⃗x21

and similarly for the other particle. Therefore, δL = 0 under the orthogonal transformation
x⃗i → Ox⃗i (so in particular, F = 0), and we can ask: what is the corresponding conserved
quantity?

To apply Noether’s theorem, we need to be able to consider rotations by matrices O that can
be taken to be infinitesimally small, so that we can express the coordinate transformation as
x⃗i → x⃗i+ δx⃗i for some δxi that can be shrunk to zero if we like. Formally, this is the statement
that the transformation can be continuously connected to the identity transformation, since we
are looking for a matrix O where we can expand

Ox⃗i = (1+ ϵT + . . . ) x⃗i ⇒ δx⃗i = ϵMx⃗i (4.16)

for some matrix T (and where we drop higher order terms in the expansion). So, we should
focus on the continuous subgroup generated by rotations about some axis n⃗, since we can always
perform a rotation by an infinitesimal amount. This is the subgroup SO(3) of rotations in three
dimensions. By contrast, a reflection about an axis can not be written in an infinitesimal version
because reflections form discrete Z2 subgroup of O(3) – they are binary operations and cannot
be expressed in terms of a small parameter as in (4.16).

To be as explicit as possible, let’s consider first a rotation about the z⃗-axis by some angle
θ, which we know is enacted by the rotation matrix

Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ∈ SO(3)

(i.e., we consider the group element O = Rz(θ)). The infinitesimal version of this transformation
is given by expanding for small θ; we can take θ = ϵ≪ 1, and expand

Rz(ϵ) ≈

 1 −ϵ 0
ϵ 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

+ ϵ

 0 −1 0
1 0 0
0 0 0

 (4.17)

13 Recall this follows from OTO = 1, since

|O(x⃗1 − x⃗2)| =
√

(O(x⃗1 − x⃗2))
T (x⃗1 − x⃗2)) =

√
(x⃗1 − x⃗2)TOTO(x⃗1 − x⃗2)

=
√

(x⃗1 − x⃗2)T (x⃗1 − x⃗2) = |x⃗1 − x⃗2| .

78



where we used cos ϵ = 1− ϵ2

2 + . . . , and sin ϵ = ϵ+ . . . for small ϵ≪ 1 (with the dots denoting
terms of cubic and higher order in ϵ), and then kept only the leading order terms linear in ϵ.
We therefore identify the matrix T in (4.16) with the matrix multiplying the ϵ above. Acting
with Rz(ϵ) on the coordinates x⃗i, this leads to the transformation

xi → xi − ϵyi

yi → yi + ϵxi

zi → zi

which we recognize as the cross product of the unit ẑ-vector that we are rotating about, times
the coordinate vector x⃗i = xix̂+ yiŷ + ziẑ,

x⃗i → x⃗i + ϵ ẑ × x⃗i = x⃗i + ϵ (xiŷ − yix̂) =

 xi
yi
zi

+ ϵ

 −yi
xi
0


(At this point you might guess at how this formula will generalize for an infinitesimal rotation
about an arbitrary axis n̂, and you will explore this case in the Exercise below.) To summarize,
we identify

δx⃗i = ϵ ẑ × x⃗i

in the infinitesimal version of the transformation.

Having identified the effect of the infinitesimal rotation on the coordinates, we can now
apply Noether’s theorem! The corresponding conserved charge is

Q =
∑
i

p⃗i · δx⃗i = ϵ
∑
i

p⃗i · (ẑ × x⃗i) = ϵ
∑
i

ẑ · (x⃗i × p⃗i)

where we pulled out the overall factor of ϵ, and used the identity a⃗ · (⃗b × c⃗) = b · (c⃗ × a⃗) to
conveniently rewrite the cross product. We now recognize x⃗i × p⃗i as the angular momentum L⃗i

of the i’th particle, so that the sum is over the z-components of the angular momenta:

Q = ϵ
[
(L⃗1)z + (L⃗2)z

]
= ϵ(L⃗tot)z

which is simply the total angular momentum of the system of particles about the z-axis. The
generalization of this result to a rotation about an arbitrary axis leads to the statement: the
invariance of the Lagrangian under rotations – which will hold true whenever the system is
spatially isotropic – implies conservation of the total angular momentum.

Exercise 4.2

Suppose the Lagrangian of a system of particles in 3 dimensions is invariant under infinites-
imal rotations about an arbitrary axis; i.e. that L is invariant under the transformation

x⃗i → x⃗i + ϵn̂× x⃗i

where i labels the different particles, and where n̂ is an arbitrary unit vector.

(a) Name two physical systems that have this symmetry.

(b) Show that Noether’s theorem implies the conservation of total angular momentum
for this system.

79



Exercise 4.3

Consider a system of particles in 2 dimensions (x, y), whose Lagrangian is invariant under
rotations of the particles’ coordinates by Rθ given in (2.8).

(a) By Taylor expanding for infinitesimal angles θ ≪ 1, identify the transformation of
the coordinates δx⃗i for this transformation.

(b) List an example of an element of O(2) (i.e. write an explicit O(2) matrix) that cannot
be written as implementing an infinitesimal transformation of the coordinates (x, y).

Example: Time translations & the homogeneity of time: What is the symmetry asso-
ciated with conservation of energy? The answer is time translation symmetry: the Lagrangian
must be invariant under the explicit time translation symmetry

t→ t+ δt (4.18)

for δt some constant, so that ∂L/∂t = 0.

We can show this as follows. Suppose the Lagrangian is time translation invariant, so that
∂L/∂t = 0. For concreteness, let’s consider the Lagrangian of a particle with the standard
kinetic energy and potential energy U(q):

L =
1

2
m ˙⃗q2 − U(q) .

Step 1 is to compute what F is; i.e. to compute δL explicitly under the transformation
(4.18). (Hint: unlike the previous examples, in this case F will not be 0!) To do this, we
need to recognize that the explicit transformation of the time coordinate (4.18) leads to an
implicit transformation of the coordinates q and q̇. In particular, to be in line with our notation
for spatial translations let’s consider an infinitesimal transformation δt = ϵn where n is some
arbitrary constant, and ϵ is a parameter we can tune to 0 as we like. Taylor expanding, this
leads to the following transformations of the coordinates and generalized momenta:

t→ t+ ϵn

q⃗ → q⃗(t+ δt) = q⃗(t) + (ϵn) ˙⃗q + . . .

˙⃗q → ˙⃗q(t+ δt) = ˙⃗q + (ϵn)¨⃗q + . . .

The explicit transformation t→ t+ δt of the time coordinate thus leads to a change in q(t) and
q̇(t); in particular, we have identified

δq⃗ = (ϵn) ˙⃗q , δ ˙⃗q = (ϵn)¨⃗q . (4.19)

We can compute the resulting change in the Lagrangian as follows:

δL = L(q + δq, q̇ + δq̇, t+ δt)− L(q, q̇, t)

=
1

2
m
(
˙⃗q + δ ˙⃗q

)2
− U(q + δq)− L(q, q̇, t)

=
1

2
m ˙⃗q2 +m ˙⃗q · δ ˙⃗q − U(q)− δq⃗ · ∇⃗U −

[
1

2
m ˙⃗q2 − U(q)

]
+ . . .

= m ˙⃗q · δ ˙⃗q − δq⃗ · ∇⃗U

= ϵn
(
m ˙⃗q · ¨⃗q − ˙⃗q · ∇⃗U

)
(4.20)
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where we expanded to linear order in ϵ, and then in the last line we substituted for (4.19). Now
we can make a clever observation: the quantity in parenthesis is precisely equal to the total
derivative dL

dt . We can see this by computing

dL
dt

=
∂L
∂q⃗

· ˙⃗q + ∂L
∂ ˙⃗q

· ¨⃗q + ∂L
∂t

= − ˙⃗q · ∇⃗U +m ˙⃗q · ¨⃗q

where we first just applied the chain rule, and then used that for this Lagrangian ∂L/∂t = 0
and substituted for ∂L/∂q⃗ = −∂U/∂q⃗ and ∂L/∂ ˙⃗q = p⃗ = m ˙⃗q. We recognize this quantity as
precisely the expression in the parenthesis in the last line of (4.20), so that in fact we have
found that

δL = ϵn
dL
dt

⇔ F = (ϵn)L

which has allowed us to identify that under infinitesimal time translations, the Lagrangian
transforms up to a total time derivative of F which is just proportional to L itself!

Then, step 2 is to apply Noether’s theorem, and therefore identify the corresponding con-
served charge from (4.13),

Q = p⃗ · δq⃗ − F = (ϵn)
(
p⃗ · ˙⃗q − L

)
The expression in parenthesis is by definition what we call the Hamiltonian of the system,
usually denoted by the letter H, which in the systems we’re considering is simply the total
energy. This result says that when the Lagrangian is invariant up to a total derivative under
time translations, so that it does not explicitly depend on time – which will hold true when the
system is homogeneous in time – the Hamiltonian defined by

H = p⃗ · ˙⃗q − L (4.21)

is a conserved quantity, so that energy is conserved.

At this point, we have covered the consequences of the symmetries of spatial translations,
rotations, and time translations in 3 dimensions, which recall form the Euclidean group. Thus,
we can succinctly summarize the results of this subsection as the statement that: when a
Lagrangian describing some physical system is invariant under the Euclidean group, that system
conserves energy, linear momentum, and angular momentum. This answers the why as to why
certain physical systems satisfy these conservation laws.

Exercise 4.4

The Lagrangian for a particle moving in a uniform force field F⃗ is given by,

L =
1

2
m ˙⃗x2 + F⃗ · x⃗ .

Consider specifically a ball of mass m in free fall in the Earth’s uniform gravitational field,
which close to the Earth has this Lagrangian with F⃗ = −mgẑ.

(a) Write the Euler-Lagrange equations that the ball’s motion satisfies.

(b) Show that the components of linear momentum perpendicular to F⃗ are preserved.
What symmetry of the Lagrangian is this related to?
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(c) Show that the component of angular momentum along F⃗ is preserved. What sym-
metry of the Lagrangian is this related to?

(d) Show that the Hamiltonian H = p⃗ · ˙⃗q −L of this system is equal to the total energy.
Is energy conserved?

Worked example: the 2-body problem Let’s put our conservation laws to use in solving a
classic problem, the 2-body problem. The two-body problem consists of two objects interacting
through a central force. You might consider, for example, the gravitational interaction between
the sun (body 1) and Pluto (body 2). In terms of the center of mass coordinate R⃗ and separation
r⃗12 = x⃗1 − x⃗2 between the bodies, the Lagrangian for this system can be written as

L =
1

2
(m1 +m2)

˙⃗
R2 +

1

2
µ ˙⃗r212 +

Gm1m2

|r⃗12|

where the reduced mass µ is

µ =
m1m2

m1 +m2

The Lagrangian completely decouples into a piece describing the constant motion of the center of
mass R⃗, and a piece describing the separation between the two masses. Note that since the mass
of the sun is so much larger than the mass of Pluto (m2 = 1.3×1022 kg and m1 = 2.0×1030 kg),
the reduced mass is approximately just Pluto’s mass,

µ ≈ m2 , m1 +m2 ≈ m1

Since the center of mass motion only involves the kinetic term, its linear momentum is
conserved – a fact we can use to separately solve for the motion of the center of mass of the
2-body system:

(m1 +m2)
˙⃗
R = p⃗com = constant ⇒ R⃗(t) =

p⃗com
(m1 +m2)

t+ R⃗(0)

The center of mass just evolves linearly in time.

——— End Lecture 17.

Next let’s focus on the separation piece in order to understand Pluto’s orbits around the
sun. We know from Noether’s theorem that the angular momentum L⃗ = r⃗12 × p⃗12 is conserved,
where p⃗12 is the momentum conjugate to r⃗12, p⃗12 = µ ˙⃗r12. Since L⃗ is perpendicular to r⃗12, the
motion of the orbit must lie in a plane perpendicular to L⃗. Therefore, it would be smart to
choose our coordinates so that (r, ϕ) are polar coordinates in that plane. Calling the plane in
which the particle travels in the x-y plane, so that the angular momentum is oriented along the
z-axis, we can use polar coordinates

(r12)x = r cosϕ , (r12)y = r sinϕ

and rewrite the Lagrangian for the separation piece as,

L =
1

2
µ(ṙ2 + r2ϕ̇2) +

Gm1m2

r
(4.22)
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Exercise 4.5

(a) Show that J = µr2ϕ̇ is a conserved quantity. (Hint: the potential of (4.22) does not
depend on ϕ.) J corresponds to the magnitude of the angular momentum L⃗.

(b) Verify that the transformation ϕ → ϕ+ c, r → r of L leads to the conserved charge
J by application of Noether’s theorem. Therefore, this conserved charge is due to
the rotational symmetry of the Lagrangian.

(c) Show that the energy E = 1
2µṙ

2 + Ueff(r) is conserved, where we have defined the
effective potential

Ueff(r) = −Gm1m2

r
+

J2

2µr2
.

At this point we have reduced our problem to motion in the plane with J = µr2ϕ̇ a constant
of motion. At this point it is useful to define the following combination as an effective potential,

Ueff(r) = −Gm1m2

r
+

J2

2µr2

It is a straightforward exercise to then show that the the Euler Lagrange equations of this
system reduce simply to

µr̈ = − ∂

∂r
Ueff(r) (4.23)

How to solve this? Actually, we don’t need to solve (4.23) at all! As you will show in Exercise 4.5,
conservation of energy leads to the constant of motion

E =
1

2
µṙ2 + Ueff(r) (4.24)

and we can put our two constants of motion to use to solve for the orbits.

Let us summarize our progress: we have reduced the 2-body problem to the problem of
a body of reduced mass µ moving in the effective potential Ueff(r), and have identified two
constants of motion for the system: E (energy) and J (magnitude of angular momentum per-
pendicular to the plane of motion). These two constants of motion will allow us to solve for the
orbit: using conservation of energy (4.24), we can determine r(t) by integrating up from t = 0,

E =
1

2
µṙ2 + Ueff(r) ⇒

√
µ

2

∫ r(t)

r(0)

dr√
E − Ueff(r)

= t

Then, we can substitute r(t) into the equation for J to solve

J = µr2ϕ̇ ⇒ ϕ(t)− ϕ(0) =

∫ t

0

J

µ

dt

r(t)2

In summary, conservation of center of mass momentum allows us to determine the time evolution
of the center of mass, and then conservation of energy and angular momentum allows us to solve
for the motion of the small body around the big body. We need to specify initial conditions
ϕ(0), r(0), and R⃗(0), as well as the constant values of E and J for the orbit.

We won’t actually solve these equations here (this is an excellent problem for an advanced
course in classical mechanics or a numerical methods course, but not so much for this course..),
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but the summary is: at the minimum of the effective potential there is a solution with a perfectly
circular orbit. Otherwise, when E < 0 the orbits are elliptic, and when E > 0 the orbits are
hyperbolic. If you are interested in a more detailed analysis of the solutions with plots, I
recommend taking a look at these MIT OCW lecture notes – the different types of orbits are
discussed in sections 25.4-5.

Math Aside: generating Lie groups An important assumption of Noether’s theorem was
that we could expand our symmetry action on the coordinates as in (4.9),

qa → q′a = qa + δqa , δqa = ϵfa(q)

for some function fa(q) of the coordinates that will depend on the particular symmetry, and ϵ
a parameter that can be tuned to zero. If the symmetry under consideration is a matrix group
enacted by matricesM , then this is the statement that we can expand (using a vector notation)

q′ =Mq = (1+ ϵT + . . . ) q ⇒ δq = ϵTq

where T is a matrix with the same dimensions asM . This was the case in the example of angular
momentum conservation, where the symmetry group under consideration was the rotation group
in three dimensions, SO(3), so that we were able to identify δq from (4.16) for rotations about
the z-axis. You considered a similar example in Exercise 4.3 for the group SO(2) of rotations
in 2-dimensions, where you showed that the matrix T in that case is

SO(2) : T =

(
0 −1
1 0

)
(4.25)

When the matrix group is a Lie group (as is the case for SO(2), SO(3), etc.), it turns out
that the matrices T actually generate the entire group: they are identified with the generators
of the Lie group. This is basically because ϵT is the first term in the Taylor expansion of the
matrix exponential,

M(ϵ) = eϵT = 1+ ϵT +
1

2!
(ϵT )2 + . . . (4.26)

so that given the generator T , we can just exponentiate it (via the matrix exponential) to
completely determine the group element M labeled by parameter ϵ. Knowledge of T is as good
as knowledge of M , since they are related by (4.26).

There is a generator for each independent parameter of the group. For SO(2), T given
in (4.25) is the only generator – SO(2) is an abelian group that only depends on one real
parameter θ, and a generic group element can be written as Rθ = eθT for T the matrix in
(4.25). Another example is SO(3), which we’ve learned is a nonabelian group that depends on
three real parameters that parameterize rotations about each of the three axes. In (4.17) we
showed that the generator of rotations about the z-axis is the matrix multiplying the ϵ there, call
it T3. Performing the similar exercise for rotations about the other two axes by also expanding
Rx(ϵ) and Ry(ϵ) for small ϵ allows us to identify the other two generators, with result:14

SO(3) : T1 =

 0 0 0
0 0 −1
0 1 0

 , T2 =

 0 0 1
0 0 0
−1 0 0

 , T3 =

 0 −1 0
1 0 0
0 0 0

 (4.27)

14 Note that the generators defined in this way are fixed up to a constant scalar prefactor. Conventionally that
prefactor is taken to be −i, so if you look up these relations on Wikipedia you might see a bunch of i’s floating
around.
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Then, a generic element of SO(3) that describes a rotation about an axis n⃗ = αx̂+βŷ+ γẑ can
be written as R(α, β, γ) = eαT1+βT2+γT3 .

Of course, in these lectures we’ve arrived at the generators T by expanding the group
elements. Somewhat more abstractly, we can go the other way around: the entire Lie group
is defined by the generators T , and in particular how they commute with each other. You can
verify that the matrices (4.27) satisfy the following relations:

T1T2 − T2T1 = T3 , T2T3 − T3T2 = T1 , T3T1 − T1T3 = T2 ,

which can be succinctly written in terms of the commutator [A,B] = AB −BA as,

[Ti, Tj ] =
∑

k=1,2,3

ϵijkTk , i, j, k = 1, 2, 3 (4.28)

where the indices i, j, k each run over the three generators, 1, 2, 3. Here the Levi-Civita symbol
ϵijk is defined as +1 when its indices are a cyclic (even) permutation of (1, 2, 3), −1 when its
indices are an anticyclic (odd) permutation of (1, 2, 3), and 0 when two or more indices coincide:

ϵijk =


+1 if (i, j, k) = (1, 2, 3), (3, 1, 2), (2, 3, 1)
−1 if (i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3)
0 if i = j or j = k or k = i

For example: we can evaluate (4.28) for a couple of values of i, j as follows:

[T1, T1] = ϵ111T1 + ϵ112T2 + ϵ113T3 = 0 + 0 + 0 = 0

[T1, T3] = ϵ131T1 + ϵ132T2 + ϵ133T3 = 0 + (−1)T2 + 0 = −T2

The first equation simply reproduces the fact that a matrix always commutes with itself: AA−
AA = 0. The second yields [T1, T3] = −T2, or in other words [T3, T1] = +T2 (since [A,B] =
−[B,A]), which you can check is explicitly satisfied by the matrices (4.27). And so on.

The commutation relations (4.28) completely characterize the rotation group in three di-
mensions SO(3), and can be taken as the fundamental definition of the group. Starting only
from (4.28), one can determine a matrix representation of the generators T1, T2, T3 by finding
matrices that satisfy those commutation relations, and thereby by exponentiation determine all
possible group elements R(α, β, γ). Different Lie groups will have different numbers of genera-
tors, and satisfy different commutation relations similar to (4.28) but with different constants
than ϵijk (known generally as structure constants) on the right-hand-side.15

For the purposes of identifying conserved charges via Noether’s theorem, this discussion is
useful because it allows us to make a general statement about the form of the conserved charge
when the symmetry transformation is a Lie group: whenever a Lagrangian has a symmetry
which forms a Lie group, there is one conserved charge Qi for each generator of the Lie group
Ti, given by

Qi = ϵ
∑
a

pa(Ti q)a − F (4.29)

where F is zero if L is completely invariant under the transformation.

15 The general structure is [Ti, Tj ] =
∑

k fijkTk where the indices i, j, k run over the number of generators, and
where fijk are a collection of numbers known as structure constants that are different for different groups.
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Exercise 4.6

Suppose a system with Lagrangian L = 1
2m

˙⃗x2 − U(x⃗) is invariant under rotations about
the x, y, z directions, and so has a symmetry group SO(3) generated by the matrices T1,
T2, T3 in (4.27). Using (4.29), compute the three charges Q1,2,3.

——— End Lecture 18.

4.4 The Poisson bracket and constants of motion

In this section we’ll discuss a formal description of classical dynamics which makes it look almost
identical to quantum mechanics – it will allow us to make the leap in the next section from
conservation laws in classical systems to conservation laws in quantum systems. It will also
provide a complementary and useful perspective on symmetries of classical systems.

From Lagrangian to Hamiltonian mechanics We’ve discussed how to build the Hamil-
tonian from the Lagrangian:

H =
∑
a

paq̇a − L

The Lagrangian is a function of q and q̇ (and in principle t); this relation is the Legendre
transform which takes us from the function L(q, q̇) to the function H(q, p) where p = ∂L/∂q̇.
Given H, it is always possible to do the inverse Legendre transform back from H to L:

L =
∑
a

∂H

∂pa
pa −H

So, the two functions L(q, q̇) and H(p, q) contain the same information, and it’s really our
choice as to which is more convenient to use. In the Hamiltonian formalism, qa and pa are the
independent variables that label my system.

Passing from the Lagrangian to the Hamiltonian H(p, q) formalism, the equations of motion
can be shown to be given by Hamilton’s equations:

ṗa = −∂H
∂qa

, q̇a =
∂H

∂pa
.

There are various ways to derive these equations which we will not review here: one can obtain
them directly from the definition of the Legendre transform, or also by varying the action with
L → H much as we did in the Lagrangian case. These equations can be nice to work with
because we’ve swapped a set of 2nd order differential equations (the Euler-Lagrange equations)
for twice the number of 1st order differential equations.

The Poisson bracket Let us make a definition which will prove itself useful to our study of
symmetries in Hamiltonian systems. Let f(q, p) and g(q, p) be two functions of the coordinates
qa and generalized momenta pa. The Poisson bracket between f and g is defined as

{f, g} =
∑
a

(
∂f

∂qa

∂g

∂pa
− ∂f

∂pa

∂g

∂qa

)
This is a bit of a funny definition, so let’s explore some of its properties.
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• The Poisson bracket is antisymmetric under exchange of its arguments: {f, g} = −{g, f}.

• It is linear: {αf + βg, h} = α{f, h}+ β{g, h} for constants α, β.

• It satisfies what is known as the Leibniz rule: {fg, h} = f{g, h} + {f, h}g. This identity
can be verified using from the Chain rule for partial derivatives.

• It satisfies the Jacobi identify: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. This is not hard
to show, it just takes some patience writing out all the terms and canceling them!

• Computing the Poisson bracket of the coordinates q and p yields the following result:

{qa, pb} = δab , {qa, qb} = 0 , {pa, pb} = 0 .

This is because the q, p coordinates are independent variables, so for instance ∂qa/∂pb = 0
and ∂pa/∂qb = 0. For example, the first identity can be verified as follows:

{qa, pb} =
∑
c

(
∂qa
∂qc

∂pb
∂pc

− ∂qa
∂pc

∂pb
∂qc

)
=
∑
c

(δacδbc − 0) = δab

One reason this notation is useful is because we can express the equations of motion as
Poisson bracket relations; one can verify by explicit computation that

{H, qa} =
∂H

∂pa
, {H, pa} = −∂H

∂qa

⇒ q̇a = {H, qa} , ṗa = {H, pa}

Aside: recall in Lagrangian mechanics we made a big deal of the fact that we could change
variables x→ q and keep the Euler-Lagrange equations the same. The analogous statement in
this Hamiltonian language is that as long as you do a coordinate transformation qa → q̂i, pa → p̂i
which preserves the Poisson bracket structure,

{q̂i, p̂j} = δij , {q̂i, q̂j} = {p̂i, p̂j} = 0

then Hamilton’s equations and the Poisson bracket are invariant under the transformation. Such
coordinate transformations are called canonical transformations.

Symmetries in Hamiltonian systems How does the relationship between symmetries and
conserved quantities manifest in the Hamiltonian language?

Our first claim is that if ∂H
∂t = 0 so that H does not explicitly depend on time, then H is a

constant of motion. This follows from the fact that

∂H

∂t
= −∂L

∂t
. (4.30)

Since we’ve already shown that ∂L
∂t = 0 implies that H is the conserved Noether’s charge, (4.30)

equivalently implies that H is a constant of motion. (4.30) is not hard to show, but we won’t
go through the details here.

What about more general constants of motion? We will need the following identity: for
some function f(q, p) of the variables qa, pa,

df

dt
= {f,H}+ ∂f

∂t
. (4.31)
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This identity can be shown as follows: with the chain rule we expand

df

dt
=
∂f

∂t
+
∑
a

(
∂f

∂qa
q̇a +

∂f

∂pa
ṗa

)
=
∂f

∂t
+
∑
a

(
∂f

∂qa

∂H

∂pa
− ∂f

∂pa

∂H

∂qa

)
where we used Hamilton’s equations in the second line. We recognize the quantity in parenthesis
as precisely the definition of {f,H}, which completes the proof. Therefore, if we can find a
function I(p, q) which is independent of t whose Poisson bracket with the Hamiltonian vanishes,
I is a constant of motion:

dI

dt
= 0 ⇒ {I,H} = 0

In other words, a constants of motion Poisson commute with the Hamiltonian.

So, the logic is as follows. Suppose we identify a Noether’s charge Q, that naturally satisfies
dQ/dt = 0 and defines a constant of motion. In the Hamiltonian formalism, this charge neces-
sarily Poisson commutes with the Hamiltonian, {Q,H} = 0. On the other hand, suppose given
some Hamiltonian we find some function I which satisfies {I,H} = 0, so that I is a constant of
motion. This I can be related to the Noether’s charge for some symmetry of the Lagrangian.
The conserved charges can be mapped 1-to-1 onto each other, but there is some inherent am-
biguity in relating Q and I; for instance, if I and J are both constants of motion satisfying
{I,H} = 0 and {J,H} = 0, then (1) due to the Jacobi identity {I, J} is also a constant of
motion, and furthermore (2) multiplying either I or J by a scalar is also a constant of motion.

Symmetries beget symmetries This last point (1) is useful in itself! For example, suppose
I know that Lx = (x⃗× p⃗)x = ypz − zpy and Ly = (x⃗× p⃗)y = zpx − xpz are conserved, i.e. both
satisfy {Lx, H} = 0 and {Ly, H} = 0. We can compute their Poisson bracket as,

{Lx, Ly} = {ypz − zpy, zpx − xpz} = {ypz, zpx} − {ypz, xpz} − {zpy, zpx}+ {zpy, xpz}
= ypx{pz, z}+ pyx{z, pz} = xpy − ypx = Lz

(4.32)

So: {Lx, Ly} = Lz. If Lx and Ly are conserved so that {Lx, H} = {Ly, H} = 0, then this
automatically implies {Lz, H} = 0; by the Jacobi identity

{Lz, H} = {{Lx, Ly}, H} = −{H, {Lx, Ly}}
= {Ly, {H,Lx}}+ {Lx, {Ly, H}} = 0

So if Lx and Ly are conserved, Lz must also be conserved, and the total angular momentum

vector L⃗ is conserved. This is a general statement about any classical system. Nice!16

Exercise 4.7

Consider the example from Exercise 4.4 of a ball moving in the Earth’s uniform gravita-
tional field, with Lagrangian

L =
1

2
m ˙⃗x2 −mgz .

(a) Write the Hamiltonian for this system in terms of the variables p⃗ = (px, py, pz) and

16 Of course, the converse is not true: {Lz, H} = 0 does not imply that {Lx, H} = {Ly, H} = 0; it could be
the case that {Ly, {H,Lx}} = −{Lx, {Ly, H}}.

88



x⃗ = (x, y, z).

(b) Compute the Poisson brackets {px, H}, {py, H}, {pz, H}, and {Lz, H}. What can
you conclude?

4.5 Lagrangians beyond classical mechanics

As we emphasized at the beginning of this section, part of the reason it is so useful to study
Lagrangian mechanics is because many systems can be understood from variational principles.
If we know the underlying symmetries of the system we’re trying to describe, we can start from
(1) the point of view that the Lagrangian should be invariant (up to a total derivative) under
those symmetries, and then (2) use information about what that Lagrangian should reduce to
in various limits, or what equations of motion we expect to get out in various limits, in order
to make sure we have the right answer.

Relativistic systems form a good set of examples. We learned in the section on relativity
that we can build Lorentz-invariant objects by summing over spacetime indices, with the correct
insertions of the Minkowski metric η. If I wish to describe the Lagrangian for a system which
is invariant under the Lorentz group, then a good starting point is to write down the possible
Lorentz-invariant objects that have the right units.

For example, we’ve learned that the action for a non-relativistic particle is given by S =∫
dt(K−U). What is the action for a free relativistic point particle? We claim that the answer

is as follows,

S = −mc
∫ √

−ds2 , ds2 = −(c dt)2 + dx2 + dy2 + dz2 (4.33)

where the integral is over the spacetime trajectory (worldline) of the particle between fixed end
points (cti, x⃗i) and (ctf , xf ).

——— End Lecture 19.

There are a few equivalent ways to express this action; in particular, expanding out the
integrand yields

√
−ds2 =

√
(ct)2 − dx2 − dy2 − dz2 = c dt

√√√√1− 1

c2

[(
dx

dt

)2

−
(
dy

dt

)2

−
(
dz

dt

)2
]

= c dt

√
1− v2

c2
= cdτ

where v is the velocity of the particle, and recall that τ is the proper time elapsed in the
particle’s rest frame. So, we can rewrite the Lagrangian as minus the rest energy divided by
the relativistic γ-factor,

L = −mc2
√

1− v2

c2
, S =

∫ tf

ti

L dt (4.34)

or equivalently, we can write that S = −mc2
∫ τf
τi
dτ .
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There are a number of checks that might convince you this is the right answer:

• The action is clearly invariant under the Lorentz group, since the invariant interval ds is
invariant under this group. All observers will agree on the value of the action, regardless
of which relative frame they are in.

In fact, the action is just a constant times the integral over the invariant spacetime interval
(up to a funny minus sign that we need due to the minus sign in the Minkowski metric) –
in particular, compare this expression to (3.8). Varying the action leads to the equations
of motion for the particle. This means that the particle follows a path through Minkowski
space that minimizes the spacetime interval ds, or in other words, the relativistic particles
follow geodesics in spacetime.

• At low speeds v ≪ c, this Lagrangian reproduces our usual non-relativistic free particle
Lagrangian. We can show this explicitly by expanding,

L = −mc2
√
1− v2

c2
= −mc2

(
1− 1

2

v2

c2
+ . . .

)
=

1

2
mv2 −mc2

which is equal to the usual non-relativistic kinetic energy up to a constant (the rest energy
of the particle).

• The canonical momentum is precisely identified as the relativistic momentum of the par-
ticle moving with velocity v⃗,

p⃗ =
∂L
∂ ˙⃗x

= −1

2
mc2

1√
1− v2

c2

(
−2

v⃗

c2

)
=

mv⃗√
1− v2

c2

= γvmv⃗

Standard application of the Euler-Lagrange equations yields ˙⃗p = 0.

• The Hamiltonian computed from this Lagrangian is precisely the relativistic energy of the
particle with velocity v, E = γvmc

2:

H = p⃗ · ˙⃗x− L =
mv2√
1− v2

c2

− (−mc2)
√
1− v2

c2
=

m√
1− v2

c2

(
v2 + c2 − v2

)
= γvmc

2

Then, energy and momentum conservation for the relativistic free particle follow from
direct application of Noether’s theorem, since the Lagrangian L is independent of both t
(so that H is a constant) and x⃗ (so that p⃗ is a constant).

Another nice example is the action for electromagnetism. As we’ve already noted, electro-
magnetism is naturally covariant under Lorentz transformations, and so we expect to be able to
derive Maxwell’s equations via variation of a relativistically invariant action. This action is,17

S =

∫
dt

∫
d3x

(
− 1

4µ0
Tr
[
(ηG)2

]
− J ·A

)
(4.35)

17It is straightforward to verify that this action is invariant under Lorentz transformations: the first term
transforms as,

Tr(ηG)2 = TrηGηG → Trη(ΛGΛT )η(ΛGΛT ) = TrηΛGηGΛT = TrΛT ηΛGηG = TrηGηG

where we used that G → ΛGΛT under a Lorentz transformation; the fact that ΛT ηΛ = η, and the property of
the trace that TrABC = TrCAB. The second term J · A is the dot product of two 4-vectors, and so is also
invariant.
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where Gµν is the electromagnetic field strength tensor that we encountered in the previous
section,

Gµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 ,

Jµ = (cρ, j⃗) is the relativistic current density 4-vector, and Aµ = (ϕc , A⃗) is the vector potential,
in terms of which the electric and magnetic fields can be expressed as

B⃗ = ∇⃗ × A⃗ , E⃗ = −∇⃗ϕ− ∂A⃗

∂t
.

Notice that the Lagrangian in this case is actually a Lagrangian density, since S =
∫
dtL where

L itself involves an integral over space. This is because the basic objects in this Lagrangian are
fields – the electric and magnetic fields, and vector potential – rather than coordinates.

Maxwell’s equations are derived by varying this action, where we express the variation of
the action in terms of the components of the vector potential Aµ. This takes a bit of work, since
we need to rewrite everything in terms of the vector potential and then apply the variational
principle. Explicitly, we can expand out

S =

∫
dt

∫
d3x

(
1

2µ0

(
B2 − 1

c2
E2

)
− j⃗ · A⃗+

1

c
ρϕ

)
and then further expand B⃗ and E⃗ in terms of the components of Aµ. After some vector calculus
identities and integrating by parts, you will find that varying with respect to Aµ leads to the
two Maxwell’s equations that follow from ∂ ·G = µ0J

T (see Exercise 3.11).

As a final comment, we note that conservation of electric charge – which recall from (3.29)
can be expressed as ∂ ·J = 0 – follows by application of Noether’s theorem, where the pertinent
symmetry transformation is a gauge transformation of the vector potential Aµ → Aµ + δAµ.
Showing this explicitly is beyond the scope of these lectures, since it requires deriving the
analogues of the Euler-Lagrange equations and Noether’s theorem for the action (4.35) (which
depends on fields..), and also requires a more in depth discussion of gauge transformations in
electromagnetism.18

18 For those interested in learning more, an interesting “intuitive” discussion of gauge transformations is given
at this link.
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5 Symmetry in Quantum Mechanics

Possibly helpful resources:

• MOST RECOMMENDED: A First Course on Symmetry, Special Relativity, and
Quantum Mechanics by Kunstatter and Das, Section 10.8-9 on linear operators and
symmetry in quantum mechanics.

• Supplemental reading: Feynman lectures on symmetry and conservation laws in quan-
tum mechanics at this link.

• If you are familiar with bra-ket notation, Chapter 4.1-4.2 of the textbook Modern
Quantum Mechanics by Sakurai-Napolitano has a nice discussion of symmetries in
quantum mechanics, including parity.

• (Very) supplemental reading: University of Cambridge Professor David Tong’s lecture
notes on extending classical mechanics to quantum mechanics are a nice additional
resource, see Section 4.8 at this link. Although we will not cover it in class, he gives
a nice explanation for how the variational principle we learned in classical mechanics
generalizes to quantum systems (section 4.8.1).

• A very nice but somewhat more advanced review of symmetries in quantum mechanics
and particle physics by Professor Rischke in Germany can be found here.

5.1 Review: Wavefunctions, observables, and the Schrödinger equation

The wavefunction In quantum mechanics, the state of a system is described by the complex
valued wavefunction Ψ(x⃗, t), that describes everything that can be known about the system.
The wavefunction is a complex function of space and time that is the ultimate DNA of the
particle/system.

The wavefunction allows us to predict the statistical outcomes of measurements. As quantum
mechanics is inherently probabilistic, we do not specify with certainty the location of a parti-
cle(s), but instead assign a probability for finding it some small region of space at a particular
time: this probability density is determined by the wavefunction as

P (x, t) = Ψ(x, t)∗Ψ(x, t) dx = |Ψ(x, t)|2 dx

(Here and for much of this review we’ll focus on formulas in 1 spatial dimension, and explain
the generalization to 3 dimensions when needed.)

Observables All properties of the system that you can measure – momentum, kinetic energy,
potential energy, color, etc. – are called observables. Observables O in quantum mechanics are
represented by linear operators Ô (denoted with a hat): an object that acts on the wavefunction
and gives another wavefunction as a result. The two most important operators you learn about
in PHYS 200 are the position operator x̂ and momentum operator p̂. The position operator
just acts via normal multiplication, so that we can replace x̂ = x (the hat doesn’t do anything
special):

x̂ = x ⇒ x̂Ψ(x, t) = xΨ(x, t)
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The momentum operator p̂ is a derivative operator:

p̂ = −iℏ ∂
∂x

⇒ p̂Ψ(x, t) = −iℏ∂Ψ(x, t)

∂x

These definitions generalize immediately to higher dimensions:

x̂i = xi , p̂i = −iℏ∂i

so for instance p̂z = −iℏ∂z with ẑ = z, and so on. More generally, if classically my observable
is a function of x and p, the corresponding quantum operator is just given by replacing all the
x’s and p’s with their operators x̂, p̂. Some other operators you may have learned about:

• The Hamiltonian, or total energy operator Ĥ, which for a massive particle moving in a
potential U(x) is equal to:

Ĥ =
p̂2

2m
+ U(x̂) = − ℏ2

2m

∂2

∂x2
+ U(x̂)

In 3 dimensions, the ∂2x is replaced by the Laplacian, ∇2.

• The angular momentum operators L̂i, which in Cartesian coordinates are

L̂x = ŷp̂z − ẑp̂y = −iℏ (ŷ∂z − ẑ∂y)

L̂y = ẑp̂x − x̂p̂z = −iℏ (ẑ∂x − x̂∂z)

L̂z = x̂p̂y − ŷp̂x = −iℏ (x̂∂y − ŷ∂x)

One way we use the system’s wavefunctions to gain information about observables is by
computing averages, or expectation values, of the observables. The expectation value of an
observable O at time t for a system in a state described by a wavefunction Ψ is given by

⟨O⟩ =
∫ ∞

−∞
Ψ∗ÔΨ dx

For instance, I can ask: what is the expectation value ⟨x⟩ for a particle trapped in a box of
length L in its ground state? In this case I would use the wavefunction you derived in PHYS

200 for this system, that Ψ(x, t) =
√

2
L sin(πxL )e−iE1t/ℏ (where E1 is the ground state energy of

the particle) for 0 ≤ x ≤ L and Ψ(x, t) = 0 outside of the box, to compute

⟨x⟩ =
∫ ∞

−∞
Ψ∗x̂Ψ dx =

∫ L

0

(√
2

L
sin
(πx
L

)
e+iE1t/ℏ

)
x̂

(√
2

L
sin
(πx
L

)
e−iE1t/ℏ

)
dx

=
2

L

∫ L

0
x sin2

(πx
L

)
dx =

L

2

This means that if I make a bunch of measurements of the particle’s location and average them,
on average I’ll find the particle in the center of the box.

Another question I can ask is: what is the uncertainty, or standard deviation, of an observable
O? In other words, if I make many measurements of the observable O associated to the operator
Ô, what is the standard deviation of the distribution of measured values? The uncertainty is,

∆O =

√
⟨Ô2⟩ − ⟨Ô⟩2 (5.1)
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In other words, I compute the expectation value of Ô2, and the expectation value of Ô, subtract
the square of the latter from the former and take the square root. For instance, in the example
of a particle in a box in its ground state, one would compute that

∆x =
√
⟨x̂2⟩ − ⟨x̂⟩2 = 0.18L

So on average, I would find the particle in the center of the box, but the standard deviation of
my set of measurements is still pretty large at almost 1/5 the length of the box.

——— End Lecture 20.

An important question is: when does a quantum state Ψ have a definite value of an ob-
servable? Sometimes it happens that acting with an operator on the wavefunction gives back a
constant times the wavefunction again:

ÔΨ = λ0Ψ , λ0 a constant (5.2)

When this is the case, we say that the observable is “sharp”: there is 100% chance that when we
measure Ô, we will yield the value λ0. In particular, there is zero uncertainty in the outcome of
the measurement (a nice exercise that I will not assign: verify that this follows from the definition
of the uncertainty (5.1)!). On the other hand, if this is not true, so that ÔΨ ̸= (constant)Ψ, the
observable is “fuzzy”: there is necessarily some uncertainty in the outcome of the measurement,
because there is more than one possibility for what measurement of Ô will return. In this latter
case, the best we can do is calculate probabilities for each measurement outcome.

Mathematically, (5.2) is called the eigenvalue equation for the operator Ô. This is because as
a linear operator, Ô can be represented in some basis by a matrix, which acts on the wavefunction
Ψ, a vector in the Hilbert space. Then, this equation is identical to the eigenvalue equation for a
matrix: it says that when I act with the matrix Ô on a vector Ψ, I get out a constant λ0 times
the vector again, so that Ψ is an eigenstate/eigenvector/eigenfunction of Ô with eigenvalue λ0.
(Really, quantum mechancis is just a whole lot of linear algebra..)

Time evolution The time evolution of the wavefunction Ψ(x, t) of a particle in the presence
of a potential U(x) is given by the Schrödinger equation,

− ℏ2

2m

∂2Ψ

∂x2
+ U(x)Ψ = iℏ

∂Ψ

∂t

We recognize the left-hand-side of this equation as the Hamiltonian operator Ĥ acting on the
wavefunction Ψ. In fact, the general version of the time-evolution equation for a quantum
system described by wavefunction Ψ with Hamiltonian H is,

Schrödinger equation: ĤΨ = iℏ∂tΨ (5.3)

You should think of the time-dependent Schrödinger equation (5.3) as the quantum equation
of motion satisfied by the state of the system.

We are often interested in the solutions to the Schrödinger equation that have constant, defi-
nite energy E. In such cases, the time-dependent wavefunction separates into a time-dependent
phase and time-independent spatial wavefunction ψ(x),

Ψ(x, t) = ψ(x)e−iEt/ℏ (5.4)
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Substituting (5.4) into (5.3), the spatial wavefunction ψ(x) can be seen to satisfy the time-
independent Schrödinger equation (TISE),

TISE: − ℏ2

2m

∂2ψ(x)

∂x2
+ U(x)ψ(x) = Eψ(x)

Such definite-energy states are called stationary states, because all probabilities computed in
stationary states are time-independent (“stationary” in time), since the phase factor cancels
when computing Ψ(x, t)∗ÔΨ(x, t) = ψ(x)∗Ôψ(x) as long as Ô itself does not depend on time.
Written more succinctly, the TISE equation takes the form

TISE: Ĥψ(x) = Eψ(x) . (5.5)

In other words, it is the requirement that acting with the total energy operator Ĥ on the
wavefunction gives back a constant – the energy of the state – times the wavefunction, so that
the wavefunction satisfies the eigenvalue equation for the Hamiltonian. A system in a stationary
state with energy E has a wavefunction that is an eigenstate of the Hamiltonian operator Ĥ,
with eigenvalue equal to the definite energy E of the system. All wavefunctions with definite,
“sharp” energy must satisfy the TISE (5.5).

5.2 The quantum version of Noether’s theorem

We learned that classically, Noether’s theorem maps a symmetry of the Hamiltonian satisfying
{Q,H} = 0 to a constant of motion dQ/dt = 0, so that Q is a conserved quantity. What is the
analogous statement for a quantum system?

Canonical quantization The answer can be most simply stated using Dirac’s prescription of
mapping a classical Hamiltonian system to a quantum system, known as canonical quantization.
The general prescription is as follows: one replaces all classical variables x, p,H, etc. with their
quantum operators x̂, p̂, Ĥ, etc; and replaces the Poisson brackets with the commutator:

{f(p, q), g(p, q)}classical ↔ − i

ℏ
[f̂(p̂, q̂), ĝ(p̂, q̂)]quantum (5.6)

Let’s examine why this rule makes sense with what you’ve learned about quantum mechan-
ics. Firstly, consider the Poisson bracket between the canonically conjugate coordinates and
momenta,

{xi, pj} = δij , {xi, xj} = {pi, pj} = 0

Following Dirac’s prescription, the first set of relations would be replaced by,

{x̂i, p̂j} = δij −→ − i

ℏ
[x̂i, p̂j ] = δij ⇒ [x̂i, p̂j ] = iℏδij (5.7)

Does this make sense? Let’s check explicitly by acting with the commutator on some general
wavefunction Ψ to compute what [x̂i, p̂j ] should be:

[x̂i, p̂j ]Ψ = (x̂ip̂j − p̂j x̂i)Ψ = xi (−iℏ∂j)Ψ− (−iℏ∂j)xiΨ
= −iℏxi∂jΨ+ iℏ (δijΨ+ xi∂jΨ)

= iℏδijΨ ✓
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where first we expanded out the definition of the commutator, and then in the second term
we used the chain rule to act with ∂j first on xi and then on Ψ, and then canceled terms.
Similarly, we will have that [x̂i, x̂j ] = [p̂i, p̂j ] = 0; these follow from the fact that xixj = xjxi,
and ∂x∂y = ∂y∂x. Therefore by explicit computation, following the rule (5.6) indeed yields the
following quantum mechanical commutation relations:

[x̂i, p̂j ] = iℏδij , [x̂i, x̂j ] = [p̂i, p̂j ] = 0 (5.8)

Furthermore, the commutation relations (5.8) are precisely the origin of the famous Heisenberg
uncertainty relation! One can show that for two observables A and B, the product of their
uncertainties is bounded by their commutator, as19

∆A∆B ≥ 1

2

∣∣∣⟨[Â, B̂]⟩
∣∣∣

Applying this identity to ∆x and ∆p, we obtain

∆x∆p ≥ 1

2
|⟨[x̂, p̂]⟩| = 1

2
|⟨iℏ⟩| = ℏ

2

This exactly reproduces the uncertainty principle ∆x∆p ≥ ℏ/2, which states that we cannot
precisely simultaneously know both the position and momentum of a particle.

Symmetries and Noether’s theorem Next, let’s examine what the rule (5.6) implies for
the time evolution of operators. Recall that the classical equation of motion describing the time
evolution of a function f(x, p) is given by the following Poisson bracket with the Hamiltonian
(recall (4.31)),

df

dt
= {f,H}+ ∂f

∂t
.

Therefore, using the rule (5.6) we expect that the time evolution of an operator Ô(t) in the
quantum mechanical system is given by the following commutator with the Hamiltonian,

dO

dt
= {O,H}+ ∂O

∂t
−→ dÔ

dt
= − i

ℏ
[Ô, Ĥ] +

∂Ô

∂t

or rearranging a bit,

iℏ
dÔ

dt
= [Ô, Ĥ] + iℏ

∂Ô

∂t
(5.9)

Therefore, any operator Ô for which the right-hand-side of (5.9) is zero corresponds to a constant
of motion of the quantum system:

[Ô, Ĥ] = −iℏ∂tÔ ⇔ Ô a constant of motion (5.10)

In particular, if Ô is independent of time, this is the condition that a constant of motion Ô
commutes with the Hamiltonian.

So far so good, now how do we see that Ô satisfying (5.10) is related to a symmetry of the
quantum system? Suppose our system is described by a wavefunction Ψ(x, t) that satisfies the
Schrödinger equation (5.3), iℏ∂tΨ = ĤΨ. We would consider some operator Ŝ to be a symmetry

19This is a general identity that we will not prove here.

96



of the quantum dynamics if when we transformed the wavefunction by Ŝ, then the transformed
wavefunction Ψ′ is also a solution to the Schrödinger equation:

Ψ → ŜΨ = Ψ′ such that iℏ∂tΨ′ = ĤΨ′ ⇔ Ŝ a symmetry operator

Let us call Ŝ a symmetry operator. Explicitly, the condition that Ŝ is a symmetry operator
can be written,

iℏ∂t
(
ŜΨ
)

!
= Ĥ

(
ŜΨ
)

iℏ
(
(∂tŜ)Ψ + Ŝ∂tΨ

)
= iℏ(∂tŜ)Ψ + Ŝ(ĤΨ) = Ĥ(ŜΨ)

⇒ [Ŝ, Ĥ]Ψ = −iℏ∂tŜΨ ✓ (5.11)

where in the second line we used the fact that Ψ satisfies the Schrödinger equation (5.3), and
then to go to the last line we rearranged terms between the left-hand-side and the right-hand-side
and used the definition of the commutator. Therefore, Ŝ transforms solutions of the Schrödinger
equation onto other solutions if and only if Ŝ corresponds to a constant of motion.

Note that there is an important ambiguity in going back and forth between the constant of
motion and the symmetry operator. For simplicity, let’s restrict the rest of the discussion to
the (usual) case where the symmetry operator / constant of motion are independent of time,
so that the condition for Ô to be a constant of motion is that [Ô, Ĥ] = 0. Suppose we have
identified the symmetry operator Ŝ for some symmetry of the system. As we just proved in
(5.11), that symmetry operator commutes with the Hamiltonian, and therefore is a constant
of motion. However, let’s go the other way around instead: supposed we have first found a
constant of motion Ô that commutes with the Hamiltonian. Then, any operator which is a
function of only Ô and constants also commutes with the Hamiltonian: in particular,

If [Ô, Ĥ] = 0 , then

[ ∞∑
n=0

αnÔ
n, Ĥ

]
= 0

While it is always true that ÔΨ will also satisfy the Schrödinger equation (this is what we
proved in (5.11)!), it might be the case that when we identify the symmetry operator Ŝ that
transforms the wavefunction in the way that we expect to correspond to that symmetry, it is
such a function of Ô and not just Ô itself. We will see this subtlety play out in our examples
below.

This is Noether’s theorem for quantum mechanics: every symmetry of the Hamiltonian
leads to an associated conserved quantity. To summarize: given a symmetry operator Ŝ that
transforms the wavefunction as Ψ → ŜΨ while leaving the Schrödinger equation invariant, we
can identify a constant of motion Ŝ that satisfies [Ŝ, Ĥ] = −iℏ∂tŜ. On the other hand, given a
constant of motion Ô that satisfies [Ô, Ĥ] = −iℏ∂tÔ, we can identify a corresponding symmetry
operator which is some function of Ô.

Example: Translations

Let’s explore this theorem through examples. Consider a particle in three dimensions subject
to a constant potential U , which evidently has translational symmetry. The Hamiltonian is

Ĥ =
p̂2x
2m

+
p̂2y
2m

+
p̂2z
2m

+ U .
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From our classical intuition, we expect that this translational symmetry should imply momen-
tum conservation. Indeed, since [p̂i, p̂j ] = 0, we evidently have that momentum is conserved,

[p̂i, Ĥ] = 0 ⇒ dp̂i
dt

= 0

How do we show in the quantum language that momentum is the conserved quantity cor-
responding to this symmetry? We need to identify the symmetry operators Ŝi that enacts the
translations. Call these operator Ŝi(ai): these are by definition the operators that act on the
wavefunction and shift all the positions by a constant amount a⃗:

Ŝi(ai)Ψ(x, t) = Ψ(xi + ai, t)

Since the Hamiltonian is separately invariant under translations in x, y, and z, we’ve given
one symmetry operator for each translation: Sx(ax) translates x → x + ax, Sy(ay) translates
y → y + ay, and Sz(az) translates z → z + az.

Clearly, the operators p̂i are not quite good enough for this job: it is NOT true for instance
that axp̂xΨ(x) = Ψ(x + a). However, as we emphasized in the subtlety above, we expect that
the symmetry operator that does the job should be some function of the momenta p̂i. It turns
out that the correct symmetry operators are,

Ŝi(ai) = eiaip̂i/ℏ (5.12)

We can verify this by expanding for small ai: for instance, considering translations in the
x-direction and expanding the exponential in its Taylor series,

Ŝx(ax) = eiaxp̂x/ℏ = 1 +
i

ℏ
axp̂x + · · · = 1 +

i

ℏ
(−iℏ)ax∂x + . . .

Acting on the wavefunction:

Ŝx(ax)Ψ(x⃗, t) = [1 + ax∂x + . . . ] Ψ(x⃗, t)

= Ψ(x⃗, t) + ax∂xΨ(x⃗, t) + . . .

= Ψ(x+ ax, y, z, t)

We recognize action of Sx(ax) as precisely equal to the Taylor series of the wavefunction Ψ(x+ax)
for infinitesimal ax.

Putting all of this together: the symmetry operator implementing translations by an amount
ai in the x̂i-direction in quantum mechanics is the operator,

Ŝi(ai) = eiaip̂i/ℏ : Ŝi(ai)Ψ(x, t) = Ψ(xi + ai, t)

And while it is true that Ŝi itself is a conserved quantity, we would more commonly say that
the corresponding conserved quantity is the momentum in that direction,

⇔ p̂i is conserved.

——— End Lecture 21.
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Generators of continuous symmetries You might have noticed that the symmetry op-
erator (5.12) looks suspiciously like the group element (4.26), where recall that in (4.26) we
identified the group elementM(ϵ) implementing a continuous symmetry transformation param-
eterized by ϵ with the exponential of the generator of the group, T , as M(ϵ) = eϵT . Comparing
with (5.12), we see that if we identify the constants ai with the ϵ parameter, and the combina-
tion ip̂i/ℏ = ∂i with the generator T , it is the same equation. In other words: in the quantum
system, the momentum operator p̂i generates translations!

The general statement is as follows: for a continuous symmetry of the quantum system, the
symmetry operator Ŝ(ϵ) that implements a symmetry transformation parameterized by group
parameter ϵ acts on the wavefunction as,

Ŝ(ϵ)Ψ = Ψ′ = Ψ+ ϵδΨ (5.13)

such that if Ψ satisfies the Schrödinger equation, Ψ′ also satisfies the Schrödinger equation.
Note that this occurs if and only if [Ŝ(ϵ), H] = 0 (assuming the case that Ŝ(ϵ) has no explicit
time dependence). The symmetry operator can be written in terms of the conserved quantity
/ constant of motion Ô as,20

Ŝ(ϵ) = eiϵÔ/ℏ . (5.14)

The generator of the symmetry group T̂ is identified with the the conserved operator Ô as,

symmetry generator: T̂ =
i

ℏ
Ô . (5.15)

Applying this logic to other continuous symmetries, you can imagine how it will go: we
will find that the Hamiltonian operator Ĥ generates time translations, with systems that are
invariant under time translations having conserved energy; the angular momentum operators
L̂n generate rotations about the n-axis, with systems that are invariant under rotations having
conserved angular momentum; and so on. We can summarize some of the main results:

Symmetry Action Symmetry Operator Generator Conserved Quantity

translations Ψ(x⃗) → Ψ(x⃗+ a⃗) e
i
ℏaip̂i i

ℏ p̂i p̂i = −iℏ∂i
time translations Ψ(t) → Ψ(t+ a) e−

i
ℏaĤ i

ℏĤ Ĥ = iℏ∂t
rotations Ψ(x⃗) → Ψ(Rn̂(θ) · x⃗) e

i
ℏ θL̂n i

ℏ L̂n L̂n =
(
ˆ⃗x× ˆ⃗p

)
n

Table 1: Summary of some common symmetry transformations of quantum systems.

In this table we identified the time evolution operator iℏ∂t with the Hamiltonian Ĥ, due
to the Schrödinger equation (5.3). You will also recognize the rotation generators Tn = i

ℏ L̂n

as precisely the generators we identified in (4.27). The statement is that the matrices given
in (4.27) furnish a 3-dimensional representation of the angular momentum operators. We will
revisit this statement in our example of the Hydrogen atom below.

——— End Lecture 22.

20 Note the other important requirement that Ŝ†Ŝ = 1: this is so that the symmetry transformation does not
affect the computation of physical quantities:∫

Ψ†Ψ →
∫

Ψ†Ŝ†ŜΨ =

∫
Ψ†Ψ .

This is encapsulated by Wigner’s theorem, which states that the symmetry operator Ŝ(ϵ) is either unitary or
anti-unitary. This is evidently true of (5.14) when Ô is Hermitian.
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5.3 Symmetries imply degeneracies

Suppose a system with Hamiltonian Ĥ possesses a symmetry implemented by the symmetry
operator Ŝ, so [Ŝ, Ĥ] = 0. Consider the stationary states of this system, labeled by their definite
energies En and spatial wavefunctions ψn:

Ĥψn(x) = Enψn(x)

Now, act with the symmetry operator Ŝ on both sides of this equation, and use the fact that
[Ŝ, Ĥ] = 0 to commute Ŝ through Ĥ on the left-hand-side:

ŜĤψn(x) = ŜEnψn(x)

ŜĤψn(x)− [Ŝ, Ĥ]ψn(x) = En

(
Ŝψn(x)

)
Ĥ
(
Ŝψn(x)

)
= En

(
Ŝψn(x)

)
This equation says that if ψn(x) is a stationary state, the transformed wavefunction Ŝψn(x) is
also a stationary state with the same energy En. Therefore, the energy spectrum of the theory
has a degeneracy: both the wavefunctions ψn and Ŝψn have the same energy.

In linear algebra terms, the stationary state wavefunctions ψn(x) are the eigenstates of the
Hamiltonian operator Ĥ (as they satisfy the eigenvalue equation with eigenvalue equal to the
energy En of the state). The relation [Ŝ, Ĥ] = 0 implies that one can find a basis of eigenstates
of the symmetry operator Ŝ that are simultaneously stationary states (eigenstates of Ĥ). In
particular, when there is a symmetry we can label the stationary states by both the subscript
n labeling their energy En, and a subscript (say) m labeling their Ŝ eigenvalue, say sm:

Ĥψnm(x) = Enψnm(x) , Ŝψnm(x) = smψnm(x)

We say that the operators Ĥ and Ŝ can be simultaneously diagonalized. This also means that if
I start at t = 0 in a stationary state with definite {En, sm}, for all time the state will continue
to have the same definite values of {En, sm}, since stationary states time evolve just with the
complex exponential factor e−iEnt/ℏ.

Equations like this hopefully look familiar from your quantum class, where you learned
that the hydrogen atom has a degenerate energy spectrum, with wavefunctions labeled by the
principal quantum number n specifying the energy En of the state, as well as 3 other quantum
numbers ℓ,m, s labeling the orbital, magnetic, and spin quantum numbers. Because the labels
ℓ,m, s can run over a variety of values for a given n, it works out that each energy level n
with energy En has a degeneracy of 2n2 different possible states ψnℓms with the same energy.
Here, we’re learning that the reason for this degeneracy is the symmetry of the hydrogen atom
Hamiltonian, where each of the ℓ,m, s quantum numbers originates from a symmetry of the
hydrogen atom Hamiltonian, and the allowed values of these quantum numbers correspond to
the different eigenstates of the symmetry operators. We’ll explore this in the following example.

Example: Symmetry and degeneracy in the hydrogen atom

Consider the hydrogen atom, which consists of an electron and proton interacting via the
Coulomb potential, U(r) = −ke2/r. The Hamiltonian for this system is,

Ĥ =
1

2me

(
p̂2x + p̂2y + p̂2z

)
+ U(r̂) = − ℏ2

2me
∇2 − ke2

r̂
.
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What are the symmetries of this system? This is a 2-body system with a central potential that
depends only on the radial distance between the electron and proton, and therefore possesses
(1) rotational symmetry and (2) time-translational symmetry. We thus expect that angular
momentum and energy are conserved. Indeed, we will presently verify that [L̂x, Ĥ] = [L̂y, Ĥ] =
[L̂z, Ĥ] = 0. We will then use this observation to show that the hydrogen atom stationary state
wavefunctions should be labeled by quantum numbers n, ℓ and m. (We will unfortunately not
have space to explain the origin of the spin quantum number s = 1

2 ; this one is slightly more
subtle and a great opportunity for a project!)

First, let’s convince ourselves that [L̂i, Ĥ] = 0 for each of i = x, y, z, so that all three
components of the angular momentum are indeed symmetries of this quantum system. Consider
the commutator [L̂z, Ĥ]. To evaluate it, it will be helpful to to recall the canonical commutation
relations [x̂i, p̂j ] = iℏδij with [x̂i, x̂j ] = [p̂i, p̂j ] = 0 (recall (5.7)), and to use some identities
involving commutators; in particular,

[A+B,C] = [A,C] + [B,C] (5.16)

[AB,C] = A[B,C] + [B,C]A (5.17)

[f(x⃗), pi] = iℏ
∂f

∂xi
(5.18)

[x̂i, g(p⃗)] = iℏ
∂g

∂pi
(5.19)

as well as the fact that the commutator is antisymmetric, [A,B] = −[B,A]. We compute

[L̂z, Ĥ] = [x̂p̂y − ŷp̂x, Ĥ] = [x̂p̂y, Ĥ]− [ŷp̂x, Ĥ]

= x̂[p̂y, Ĥ] + [x̂, Ĥ]p̂y − ŷ[p̂x, Ĥ]− [ŷ, Ĥ]p̂y

where in the first line we used linearity of the commutator (5.16), and in the second line we
used the identity (5.17) twice. Now, each term in the above expression takes the form of
either (minus) (5.18), or (5.19), since the kinetic terms in the Hamiltonian depend only on
the momenta, and the potential is only a function of r =

√
x2 + y2 + z2. The only nonzero

commutators come from terms where a position and its conjugate momentum are involved. We
need to compute, in particular,

[p̂i, 1/r̂] = −iℏ ∂

∂xi
(x2 + y2 + z2)−1/2 =

iℏ
2r3

2xi = iℏ
xi
r3

[x̂i, p̂
2
j ] = iℏ

∂

∂pi
p̂2j = 2iℏpiδij

where in the first line we used (5.18), and in the second we used (5.19). These allow us to finish
the computation,

[L̂z, Ĥ] = x̂

[
p̂y,−

ke2

r̂

]
+

[
x̂,

p̂2x
2me

]
p̂y − ŷ

[
p̂x,−

ke2

r̂

]
−

[
ŷ,

p̂2y
2me

]
p̂x

= −iℏke2x̂ŷ 1

r3
+

1

2me
iℏ2p̂xp̂y + iℏke2ŷx̂

1

r3
− 1

2me
iℏ2p̂yp̂x = 0

As expected, all the terms canceled out so that L̂z commutes with the Hamiltonian, implying
that the z-component of angular momentum is conserved. The commutators for L̂x and L̂y can
be obtained with almost identical computations, with the final result that

[L̂i, Ĥ] = 0 , i = x, y, z . (5.20)
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Now, let’s apply what we learned about degeneracy. Consider a stationary state wavefunc-
tion with energy En. Due to (5.20), can should be able to label these wavefunctions by their
L̂z, L̂x, and L̂y eigenvalues, right?

The answer is almost, but there’s a wrinkle: even though individually each of L̂x, L̂y, and
L̂z commute with the Hamiltonian (so that they are all definitely symmetries!) they do not
commute with each other. It is a linear algebra fact that we can only simultaneously diagonalize
operators that commute with one another – meaning we can only simultaneously have a state
with definite values for a set of observables whose operators mutually commute. We can check
that our operators L̂i are not mutually commuting by, for instance, computing the commutator
[L̂x, L̂y]. The computation proceeds as follows,21

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z] = [ŷp̂z, ẑp̂x]− [ŷp̂z, x̂p̂z]− [ẑp̂y, ẑp̂x] + [ẑp̂y, x̂p̂z]

When we expand out each of these terms using (5.17), we will only get something nonzero when
a ŷ is being commuted with a p̂y, or a ẑ with a p̂z, or a x̂ with a p̂x. In the first term, this
means picking out only the piece that looks like ŷ[p̂z, ẑ]p̂x; in the second and third terms there
is no nonzero contribution; while in the last term it means picking out the piece that looks like
x̂[ẑ, p̂z]p̂y. So, we can evaluate

[L̂x, L̂y] = ŷ[p̂z, ẑ]p̂x + x̂[ẑ, p̂z]p̂y = −iℏŷp̂x + iℏx̂p̂y = iℏL̂z

Continuing with similar computations, one can check that these three operators satisfy,

[L̂x, L̂y] = iℏL̂z , [L̂y, L̂z] = iℏL̂x , [L̂z, L̂x] = iℏL̂y . (5.21)

It is no accident that the relations (5.21) are precisely the same commutation relations (up to
some iℏ’s) satisfied by the SO(3) rotation group generators T̂i that we found in (4.28) – after all,
according to Table 1 we’re supposed to identify the rotation group generators with the angular
momentum operators as T̂i =

i
ℏ L̂i!

Back to the main point: definite energy states of the Hamiltonian can be labeled by a
set of maximally commuting operators, that commute both amongst themselves and with the
Hamiltonian. For the angular momentum group SO(3) with the three generators L̂i satisfying
(5.21), it turns out that we can choose at most two linearly independent combinations of these
operators that each both commute with one another, and also commute with Ĥ. This maximally
commuting set is conventionally taken to be the operator L̂z along with the total angular
momentum-squared operator L̂2:

L̂z , L̂2 = L̂2
x + L̂2

y + L̂2
z satisfy [L̂z, L̂

2] = [L̂z, Ĥ] = [L̂2, Ĥ] = 0 .

Exercise 5.1

Show (1) that L̂2 commutes with the hydrogen atom Hamiltonian Ĥ, and (2) that L̂2 and
L̂z commute with each other. You are allowed to use the relations [L̂i, Ĥ] = 0 for i = x, y, z
and (5.21) proven in the notes.

We conclude that the Hydrogen atom wavefunctions with definite (sharp) energy En also
have definite (sharp) values of their total angular momentum L2, and z-component of angular

21 This is completely identical to the exercise we did in (4.32), because the Poisson bracket and commutator
satisfy exactly the same properties and same canonical relations, except that now there are extra iℏ’s hanging
around due to the canonical quantization rule (5.6).

102



momentum Lz. These lead to two additional quantum numbers conventionally called ℓ and m,
which label the allowed values of each of these observables,

Ĥψnℓm = Enψnℓm , L̂2ψnℓm = fL(ℓ)ψnℓm , L̂zψnℓm = fz(m)ψnℓm . (5.22)

Here En is the energy of the state, fL(ℓ) is its total angular momentum squared, and fz(m) is
its z-component of angular momentum.

Each of Ĥ, L̂2, and L̂z are differential operators, and so (5.22) represents 3 differential
equations that allow one to solve for ψnℓm(x, y, z) – although as you might expect due to the
spherical symmetry of the problem, it is actually easiest to solve these equations in spherical
coordinates for ψnℓm(r, θ, ϕ). Solving these equations also fixes the form of fL(ℓ) and fz(m).
The result can be stated as,

Ĥψnℓm = Enψnℓm , L̂2ψnℓm = ℏ2ℓ(ℓ+ 1)ψnℓm , L̂zψnℓm = ℏmψnℓm (5.23)

where n can be any positive integer, n = 1, 2, . . . ,∞; given a value of n, ℓ runs from 0 to n−1 as
ℓ = 0, 1, 2, . . . , n− 1; and given a value of ℓ, m runs from −ℓ to ℓ as m = −ℓ,−ℓ+1, . . . , ℓ− 1, ℓ,
leading to the n2 degeneracy of the n’th level of the hydrogen atom (before the electron’s spin
is taken into account).

Discrete symmetries have consequences: revisiting parity

Back in Section 2 we introduced the operation of parity. Recall that parity is a Z2 transformation
that acts to reflect x⃗ → −x⃗. Let’s call the symmetry operator enacting the transformation P̂ ,
which acts on the wavefunction as,

Ψ(x⃗) → P̂Ψ(x⃗) = Ψ(−x⃗) .

This operation is an example of the discrete Z2 group of order 2, since acting twice with P̂ just
gives back the original wavefunction (P̂ 2 = 1, the identity operator). Therefore, states that
have definite parity are either even or odd under a parity transformation:

If Ψ has definite parity: P̂Ψ(x⃗) = ±Ψ(x⃗) . (5.24)

More formally, since P̂ 2 = 1, the eigenvalues of the parity operator are ±1,22 so states that are
eigenvectors of the parity operator are either even (with eigenvalue +1) or odd (with eigenvalue
−1) under the transformation.

So, how does our discussion in this section apply to a discrete transformation? Going back
to Table 1, we still have a well-defined symmetry operator (the operator we are calling P̂ ),
and when parity is a symmetry of the system this operator commutes with the Hamiltonian as
[P̂ , Ĥ] = 0. This is true when the Hamiltonian depends on only even powers of the momenta
and coordinates – see the aside below for the explanation for why [P̂ , p̂2i ] = [P̂ , x̂2i ] = 0. The
difference with the continuous case is that there is no sense in which we can write the symmetry
operator as the exponential of some generator which we interpret as a conserved observable of
the system. But this is ok! Parity is a perfectly good symmetry of many standard quantum
systems – including the free particle, particle in a box, quantum harmonic oscillator, hydrogen
atom – and has real consequences.

22 A simple proof of this statement: Consider an eigenvector v⃗ of the parity operator with eigenvalue p, so that
P̂ v⃗ = pv⃗. Act with P̂ again on both sides and use P̂ 2 = 1: P̂ 2v⃗ = v⃗ = p(P̂ v⃗). Comparing the first and second
equations, the eigenvalue p must satisfy p = 1/p, or p2 = 1, which sets p = ±1.
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Aside: To see that P̂ commutes with the Hamiltonian when the Hamiltonian depends on
only even powers of coordinates and momenta, we have to first understand how it acts on the
coordinates and momenta. This is a little bit more subtle than just using our classical intuition
to say that P̂ x should equal −x; the correct way to define the action of a symmetry operator
in quantum mechanics is by how it acts on the states (which is what we did in requiring that
Ψ(x⃗) → Ψ(−x⃗)), and then to make sure it acts as expected on expectation values, in this
case to take ⟨x̂⟩ → −⟨x̂⟩. So, we need to check that after applying the transformation to the
wavefunction, ⟨x̂⟩ transforms as,

⟨x̂⟩ =
∫

Ψ†x̂Ψ dx →
∫
(P̂Ψ)†x̂(P̂Ψ) dx =

∫
Ψ†(P̂ †x̂P̂ )Ψ dx . (5.25)

P̂ is a unitary operator (P̂ † = P̂−1, see the footnote around (5.14)), and actually since P̂ 2 = 1,
we have that P̂ † = P̂−1 = P̂ . The action of P̂ on the operator x̂ is therefore set by (5.25) to,

⟨P̂ x̂⟩ = −⟨x̂⟩ ⇔ P̂ x̂P̂ = −x̂ (5.26)

P̂ does not commute with x̂; multiplying both sides of this equation by P̂ on the right, using
P̂ 2 = 1, and rearranging yields

P̂ x̂P̂ = −x̂ ⇒ P̂ x̂P̂ 2 = −x̂P̂ = P̂ x̂ ⇒ [P̂ , x̂] = P̂ x̂− x̂P̂ = −2x̂P̂ ̸= 0 .

But, as expected P̂ does commute with x̂2, since the two minus signs cancel:

[P̂ , x̂2] = x̂[P̂ , x̂] + [P̂ , x̂]x̂ = −2x̂2P̂ − 2x̂P̂ x̂ = −2x̂2P̂ + 2x̂2P̂ = 0 .

For exactly the same reasons, parity does not commute with the momentum operator, but does
commute with the momentum operator squared: P̂ p̂iP̂ = −p̂i with [P̂ , p̂2i ] = 0. End aside.

In particular, our entire discussion of degeneracy still applies: If a system is parity-symmetric
so that there is an operator P̂ acting as Ψ(x⃗) → Ψ(−x⃗) that commutes with the Hamiltonian
as [P̂ , Ĥ] = 0, then the Hamiltonian and parity operators can be simultaneously diagonalized,
which implies that the stationary states of the system can be taken to have definite even or
odd parity as in (5.24). You can then think of the parity of the wavefunction to have its own
quantum number / charge, which is either ±1 (corresponding to either even or odd parity).
Then, if we start at time t = 0 in a state of definite parity, the time-evolved state will continue
to have the same definite parity. This principle is called conservation of parity. (In this sense,
continuous symmetries aren’t the only ones that can be conserved in quantum systems!)

For example, consider a particle in a box. The Hamiltonian within the box Ĥ = p̂2/(2m)
is parity-symmetric, and therefore the stationary state wavefunctions will have definite even or
odd parity. You can verify that the wavefunctions satisfy

ψn
P̂−→ (−1)n−1ψn

so that the ground state is even under reflection about the center of the box, the first excited
state is odd, and so on. Similarly, in the hydrogen atom, you can verify that both [P̂ , Ĥ] = 0
and [P̂ , L̂i] = 0, so the stationary state wavefunctions ψnℓm also have definite parity. It turns
out that the hydrogen atom wavefunctions satisfy

ψnℓm
P̂−→ (−1)ℓψnℓm

For more discussion on the non-conservation of parity in particle physics, I recommend the
discussion in the Feynman Lectures at this link.

104

https://www.feynmanlectures.caltech.edu/III_17.html


Exercise 5.2

An electron in the hydrogen atom is in the following state,

ψnℓm(r, θ, ϕ) =
1

8
√
πa30

r

a0
e−r/(2a0) sin θeiϕ .

(a) Determine the values of En, ℓ, and m for this state, by applying (5.23) with the
operators Ĥ, L̂2 and L̂z given in spherical coordinates as,

Ĥ = − ℏ2

2m

(
∂2

∂r2
+

(
2

r

)
∂

∂r
+

1

r2

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ csc2 θ

∂2

∂ϕ2

])
− ke2

r

L̂2 = −ℏ2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+ csc2 θ

∂2

∂ϕ2

)
L̂z = −iℏ ∂

∂ϕ

Note that the Bohr radius a0 and Coulomb’s constant k are related as a0 =
ℏ2

mke2
.

(b) Upon measurement, what is the observed value of Lz for this atom? What is the
parity of this state?

——— End Lecture 23.

105



6 Spontaneous Symmetry Breaking

Possibly helpful resources:

• As usual, Cambridge professor David Tong has some nice lecture notes on symmetry
breaking, available here.

• A very nice and comprehensive introduction to the topic appears in Section 2 of the
lectures notes available here.

• A more advanced but classic reference is Sydney Coleman’s Aspects of Symmetry.
Most of the discussion therein involves field theory.

• Kunstatter-Das has a purely conceptual discussion in Section 2.4.3.

• For a comprehensive reference on the Ising model in statistical mechanics, I recom-
mend sections 1.1-1.2 of these notes on Statistical Field Theory. We will largely follow
this reference in our discussion of this model.

When considering symmetry breaking, you might have different scenarios in mind. One type
of symmetry breaking is an explicit breaking: you add a term to the Lagrangian or Hamiltonian
of your system that breaks a symmetry that the system had before you added that term. For
example, the hydrogen atom Hamiltonian is invariant under rotational symmetry. Putting this
system in a magnetic field explicitly breaks some of this symmetry; in particular, this adds the
term Ĥ = −µ⃗·B⃗, where µ⃗ = eL⃗/(2me) is the magnetic dipole momentum of the electron, so that
depending on the direction of the magnetic field not all the angular momentum operators will
commute with the perturbed Hamiltonian. This breaks part of the degeneracy of the hydrogen
atom, causing the energies to shift in what is known as the Zeeman effect. Still, explicit
symmetry breaking can be useful if the breaking is small. For instance if the magnetic field
applied to the hydrogen atom is small |B| ≪ 1, the 2ℓ+1 degenerate states only get slightly split,
and we can understand the approximate degeneracy as coming from the underlying rotational
symmetry of the un-perturbed system.

Another type of symmetry breaking is known as spontaneous symmetry breaking. This
moniker is a bit of a misnomer, since the symmetry is not really broken but just hidden.
Spontaneous symmetry breaking (SSB) is what we call the phenomenon in which a theory is
invariant under a symmetry, but the ground state (lowest energy state) is not. In general, there
is no reason why a symmetry of the Hamiltonian of a quantum-mechanical system should also
result in a symmetry of the ground state. Or analogously, why a symmetry of the equations of
motion should also result in a symmetry of the solutions. The underlying equations of motion
/ Lagrangian / Hamiltonian preserve the symmetry, but the actual state of the system does
not, so from the low-energy perspective the symmetry is “hidden”. For the rest of this section,
we will exclusively discuss this scenario of spontaneous symmetry breaking, which is extremely
useful for characterizing the states of systems.

The classic example is that of the Heisenberg ferromagnet: an infinite array of spin-1/2
magnetic dipoles with nearest-neighbor interactions that cause neighboring dipoles to want to
align. The Hamiltonian is rotationally invariant, but the ground state is not; it is a state in which
all the dipoles are aligned in some particular arbitrary direction. For an infinite ferromagnet,
this ground state is infinitely degenerate, and labeled by the direction in which the spins point:
any state with all the spins aligned in the same direction is a ground state of the system. If you
lived inside the ferromagnet, you would have a hard time detecting the rotational symmetry in
the laws of physics, since as far as you can tell that rotational symmetry is broken.
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Figure 14: Left: The harmonic oscillator potential V = 1
2mω

2x2 (blue), plus a small quartic

term δV = λ
4x

4 (in orange). Right: the solution x(t) for λ = 0 (blue), versus small λ (orange).

6.1 Discrete symmetry breaking in a classical system

Let’s consider first an example of spontaneous symmetry breaking in classical physics. Consider
a particle of massm in a harmonic oscillator potential, where we add a small quartic term V ∼ x4

to the potential so that the oscillator is anharmonic. The Lagrangian is,

L =
1

2
mẋ2 − 1

2
mω2x2 − λ

4
x4 (6.1)

where λ is a parameter that measures the anharmonicity. In particular, for λ = 0 this is the
standard Lagrangian for a simple harmonic oscillator; there is a minimum of the potential
at x = 0, and the solutions oscillate around x = 0 as (suppose we take as initial conditions
x(0) = A, ẋ(0) = 0),

x0(t) = A cos(ωt) .

For nonzero λ, there is still a minimum of the potential at x = 0, but to find the form of the
solution we need to solve the Euler-Lagrange equations with λ included,

∂L
∂x

=
d

dt

∂L
∂ẋ

⇒ −ω2x− λ

m
x3 = ẍ (6.2)

Perturbatively, for small λ the solutions to these equations take the form23

x(t) = x0(t) + λx1(t) + . . .

x1(t) = − A3

8mω2

(
3ωt sin(ωt) +

1

4
(cos(ωt)− cos(3ωt))

)
where we neglect terms of order λ2 and higher, assuming λ ≪ 1. You can verify in particular
that the solution x0(t)+λx1(t) satisfies the equations of motion (6.2) to order λ. These solutions
describe motion which is approximately harmonic, but with an amplitude that grows with time
(see Figure 14).

The Lagrangian (6.1) enjoys a Z2 parity symmetry, since it is invariant under taking x→ −x.
The anharmonic oscillator solutions we just described respect this symmetry.

23 This problem is treated perturbatively in Section 6.3.1 of Classical Dynamics: A Contemporary Approach,
found here. The exact solution can be written in terms of elliptic integrals.
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Figure 15: The double well potential V = −1
2m|ω2|x2 + λ

4x
4.

On the other hand, what if we consider allowing the x2 term to have the opposite sign, with
ω2 < 0? This system describes a particle moving in the following potential,

V (x) = −1

2
m|ω2|x2 + λ

4
x4 . (6.3)

Now x = 0 is a local maximum rather than a local minimum of the potential (see Figure 15),

which looks like a double well with two minima at x = ±
√

−mω2

λ ≡ v±. (Yes this seems a

little physically strange – literally we are studying a particle moving in a harmonic potential
with negative spring constant – but there are many examples in nature where such a potential
describes the physics of a system! We will study such an example below.)

The solutions of this system will correspond to approximately harmonic motion executed
about either the left minimum or the right minimum. To study the system of a particle moving
in this double-well potential potential, it is useful to rewrite the potential as

V (x) =
λ

4

(
x2 − v2±

)2
+ constant

which only shifts the Lagrangian by an unimportant constant. Then, we can expand near the
ground state at x = v± by defining the shifted coordinate x̃(t),

x(t) = x̃(t) + v±

in terms of which the potential takes the form,

V (x̃) = λv±x̃
2 + λv±x̃

3 +
λ

4
x̃4 + constant (6.4)

This describes a particle of mass m (note that λv2± = m|ω2|) executing approximately harmonic
motion about either the left minimum centered around v− or the right minimum centered around
v+. But, neither of these ground states is invariant under the Z2 symmetry of the underlying
Lagrangian! The potential (6.4) for the shifted field is not invariant under x̃ → −x̃ due to the
cubic term x̃3. If I was a little ant living at the bottom of one of these potentials, it would be
extremely difficult to detect the hidden x → −x symmetry directly. Instead, the Z2 symmetry
acts to exchange the two ground states, since taking v+ → −v+ or v− → −v− exchanges the
two degenerate states.

We can summarize the lesson we have learned from this example as: if a Z2 symmetry is
spontaneously broken, it leads to 2 ground states. More generally, this lesson will extend to
other types of symmetry breaking patterns; the consequence of the symmetry, when broken, is
to generate multiple degenerate ground states.
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Figure 16: The ground state wavefunction in the double well potential.

6.2 Symmetry breaking in quantum systems

If we consider the quantum mechanical analogue of our previous example, there is a twist:
there is no spontaneous symmetry breaking in quantum mechanical systems with finite degrees
of freedom. The ground state is always invariant under the Z2 symmetry!

In particular, the Hamiltonian for the double well potential is given by,

Ĥ =
p̂2

2m
− 1

2
m|ω2|x̂2 + λ

4
x̂4

which as a quadratic function of the momenta and coordinates is invariant under parity, so
the parity operator commutes with the Hamiltonian [P̂ , Ĥ] = 0 and energy eigenstates are also
eigenstates of the Z2 symmetry. The ground state of this system is depicted in Figure 16, and it
is symmetric in x→ −x. We can understand this symmetric ground state as the superposition
of the wavefunctions that are localized near one or the other minima; roughly,

ψ0(x) ≈ ψleft(x) + ψright(x)

There is equal probability of finding the particle near the left minimum, or near the right
minimum. Another way to say this is that if the particle starts in one minimum, say at x = v−,
there is a nonzero probability that it will tunnel through the finite potential barrier in the
middle and end up at the other minimum x = v+.

In order to have a quantum system that exhibits spontaneous symmetry breaking, you need
infinite degrees of freedom. There are multiple ways to see this. From the perspective of
double-well problem, the reason the ground state is a superposition of left- and right-localized
wavefunctions and that there is a nonzero amplitude to tunnel from the left minimum to the
right minimum is because the energy barrier separating the minima is finite. Effectively, you
can only have a system with spontaneous symmetry breaking when it costs an infinite amount of
energy to tunnel between the two ground state configurations, so that there really are multiple
unique ground states.

This requirement of infinite degrees of freedom can be achieved either by upgrading to
quantum field theory and considering quantum fields that take values over all of space (in
which case the analogous double-well problem does have an infinite energy barrier separating the
minima), or by considering the thermodynamic limit of quantum systems. The thermodynamic
limit for a system of N particles in volume V is defined by taking both the limits N → ∞
and V → ∞ while keeping the ratio N/V fixed, so that intensive quantities like density and
temperature remain fixed, but extensive quantities likeN and the entropy grow large. (Although
practically speaking, many aspects of symmetry-breaking appear in large, but finite, systems,
so this is not just a formal exercise!)
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Basic notions of SSB Suppose our system exhibits spontaneous symmetry breaking. This
means that the Hamiltonian is invariant under the symmetry, commuting with the symmetry
operator as,

[Ŝ, Ĥ] = 0 ,

while the ground state ψ0 of the system is not left invariant by the symmetry transformation.
In particular, upon acting with Ŝ on the ground state, the result is another degenerate ground
state (state with the same energy) which is inequivalent from the first one:

ŜΨ0 = Ψ′
0

What it means to be able to distinguish between the states Ψ0 and Ψ′
0 is that there is some

operator whose expectation values in the two states differs. The statement is: the inequivalence
of the ground states is measured by an order parameter: a local operator Ô(x) whose expectation
value in the ground states is nonzero and different for the inequivalent broken states:24

⟨Ô(x)⟩Ψ0 ̸= ⟨Ô(x)⟩Ψ′
0

For example, suppose a Hamiltonian possesses a Zn symmetry which is spontaneously bro-
ken. We can denote the symmetry operator associated to one of the n group elements as Ŝ,
where by the group law, composing the group element with itself n times yields the identity,

Ŝn = 1

So, there will be n broken states, denoted

ŜαΨ0 , α = 0, 1, . . . , n− 1

In general, for a finite group the order of the group will equal the number of degenerate ground
states, and the ground states are related to one another by the action of the symmetry operator.

More generally, we could have the case that a symmetry group G (continuous or discrete)
is partially broken, but preserves a subgroup H ⊂ G. So, G is the symmetry of the La-
grangian/Hamiltonian, and H is the symmetry of the ground state. This will lead to a de-
generacy of G/H distinct states, where G/H denotes the group quotient (basically, what’s
leftover after modding out by the invariant subgroup H). For example, in the Heisenberg
anti-ferromagnet, the SU(2) rotational symmetry of the magnetic dipoles is broken to a U(1)
symmetry of the ground state that corresponds to rotations around a single axis. The quotient
is SU(2)/U(1) ≃ S2, which corresponds to the set of points on the surface of a sphere. These
points indicate the possible directions of the magnetization of the ground states.

——— End Lecture 25.

6.3 The connection between phase transitions and symmetry

The importance of symmetry in the study of phase transitions cannot be overstated. To il-
lustrate this relationship, we’ll consider the example of the Ising model. We will consider this
system as a classical model in the thermodynamic limit.

24 This is the tricky part: to have SSB, we need ground states (eigenstates of the Hamiltonian with lowest
energy) which are also eigenstates of the order parameter operator. But, the order parameter does not typi-
cally commute with the Hamiltonian, so how can this be? In precisely the thermodynamic limit, even though
[Ô, Ĥ] ̸= 0, the expectation value ⟨[Ô, Ĥ]⟩Ψ0 → 0, so that the symmetry broken states are truly eigenstates of
the Hamiltonian.
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The classical Ising model refers to a lattice of N sites in d-dimensions, with a spin on each
site that can either be spin up (si = +1) or spin down (si = −1). The energy is,

E = −B
∑
i

si − J
∑
⟨ij⟩

sisj . (6.5)

The spins interact only with their nearest neighbors (which is denoted by the ⟨ij⟩ in the sum),
with the strength of the interaction measured by a coupling J . When J > 0, the neighboring
spins prefer to be aligned (all up, or all down) since this lowers the energy – this is called
ferromagnetic behavior. In general, we can consider applying an external magnetic field B to
the system of spins, which makes the spins want to align up to lower the energy. The question
we would like to ask is: what is the physics of this model at finite temperature T?

The probability of the system being found in a configuration of spins {si} is given by the
Boltzmann distribution,

P [si] =
e−E[si]/(kBT )

Z
, Z =

∑
{si}

e−E[si]/(kBT )

where Z is the partition function – the sum of the Boltzmann factors over all states. The
average spin of the configuration is what we call the magnetization M , which is computed as,

M =
1

N
⟨
∑
i

si⟩ =
kBT

N

∂ logZ

∂B

This is the order parameter. Generally, we’ll consider the thermodynamic limit of this system,
where N → ∞ and V → ∞ with N/V held fixed, and we’ll be interested in the B = 0 case
(where strictly speaking we should take the limit B → 0 after N → ∞).

Unfortunately, the partition function is only exactly calculable on a d = 1 dimensional lattice
(where it is simple enough to be a homework problem), or a d = 2 dimensional lattice at B = 0
(with the much-more-complicated solution originally due to Onsager). In higher dimensions,
there are no exact solutions. In such cases, the useful scheme for thinking about this system,
as pioneered by Lev Landau, is called mean field theory. Basically, we first do the sum over all
configurations of spins with fixed average magnetization, and then subsequently sum over all
possible magnetizations, expressing the partition function in terms of the free energy F (M) as,

Z =
∑
M

 ∑
{si} for fixed M

e−E[si]/(kBT )

 =
∑
M

e−F (M)/(kBT )

This is a “course graining”, since we re-express the energy and other thermodynamic variables
in terms of the average magnetization M rather than the microscopic spins of the system. This
also allows us to treat the magnetization as a uniform field rather than a discrete variable.

Equilibrium in thermodynamic systems relies on minimizing the free energy, so to find the
equilibrium state (i.e. the stable phase of the system) we need to minimize F as a function of
our order parameter, M . Actually, the useful quantity to compute is the intensive free energy
per unit spin, f(M) = F (M)/N . As we will see, the behavior of the free energy depends on the
temperature.

Taking B = 0 in (6.5), the microscopic definition of the system has a Z2 symmetry that
corresponds to flipping all the spins at once: si → −si for all i. For this case, Landau used a
series of approximations to compute,

f(M) ≈ constant +
1

2
(T − Tc)M

2 +
1

12
TM4 + . . . (6.6)
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Figure 17: The phase transition in the Ising model is classified by spontaneous Z2 breaking.

where the “critical temperature” Tc depends on J and the number of dimensions – Tc = 4J
for a square lattice in 2 spatial dimensions, for instance. The crucial observation we can make
about the Landau free energy (6.6) is that for T > Tc, the term in front of the M2 is positive,
and this is the anharmonic oscillator potential we already studied in (6.1). Much as we saw
in that case, the ground state is given by expanding around the unique, symmetry-preserving
minimum at M = 0. The conclusion is that at high temperatures T > Tc, the magnetization
vanishes, M = 0, and the spins will be randomly distributed (with on average about half being
pointed up and half being pointed down). This state preserves the underlying Z2 global spin-flip
symmetry. This is known as the disordered phase of the system.

When T < Tc, however, the Landau free energy (6.1) takes the form of the spontaneous
symmetry breaking double well potential we studied in (6.3). The minima now lie atM = ±M0,
and the spins will either mostly aligned with either positive magnetization (up) or negative
magnetization (down) depending on which ground state the system realizes. Even though the
free energy is invariant under the Z2 symmetry (which acts on M as M → −M), the lowest
energy states break this symmetry by choosing either magnetization +M0 or −M0, which are
related by the broken Z2. This is known as the ordered phase.

In this case, the transition at Tc is actually what’s known as a second order phase transition,
since the magnetization varies continuously as a function of T . When B ̸= 0, on the other hand,
the transition is first order (discontinuous). B > 0 tilts the free energy so that the minimum
on the right is lower than the one on the left, and one minimum is preferred.

This example exhibits the general principles of symmetry breaking: when the underlying
theory has a discrete symmetry, the ordered phase has a number of degenerate, disconnected
ground states which spontaneously break the symmetry. In this case, G = Z2 was the underlying
symmetry of the free energy. At high temperatures T > Tc, the symmetry was unbroken. At
low temperatures, the symmetry was spontaneously broken so that the system must choose one
of two ground states. The two different phases – disordered at high temperatures and ordered
at low temperatures – are characterized by different choices of the symmetry which is preserved
by the ground state: H = Z2 or H = nothing. On the other hand, when B ̸= 0 there is no
Z2 symmetry of the free energy, and the two phases are not distinguishable. This is to say, by
going to temperatures T > Tc it is possible to move from any point in the phase diagram to any
other point in the phase diagram without passing through a phase transition. This is precisely
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the behavior of water in its transition between the liquid and gaseous phases near the critical
temperature Tc ≈ 374◦C. The similarity is not an accident: the critical point on the water
phase diagram is well-described by the second order phase transition of the d = 3 Ising model!
This is an example of the phenomenon known as universality: many different systems can be
described by the same critical point.

This fits into the broader Landau classification of phase transitions: symmetry provides a
powerful mechanism to understand when a phase transition will take place. We can characterize
states of matter in terms of their (broken) symmetry. One determines an order parameter and
a symmetry group G under which it transforms. Then, the different phases of matter within
this class are characterized by the possible symmetry breaking patterns: the group H preserved
by the ground state. The choice of universality class describing a second order phase transition
is determined in large part by the symmetry breaking pattern.25

——— End Lecture 26.

25 Warning: not all states of matter can be classified in this way! Understanding how generalized symmetry
principles can extend this paradigm to encompass all known phases of matter is a fruitful area of modern research.
For a nice review I suggest UCSD professor John McGreevy’s take here, and public lecture available here.
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https://arxiv.org/pdf/2204.03045
https://www.youtube.com/watch?v=S53tT7ED7g8&t=4108s
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